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Summary 

A growing number of researchers concur that tourism destinations are complex dynamic 
systems; knowing their structural and dynamic characteristics is certainly needed to reach an 
effective governance that in turn can allow to obtain sustainable growth and destination 
competitiveness. Different methods rooted in the complexity science and, broadly, in the idea 
that a systemic holistic view is more suitable than traditional reductionist approaches, can be 
used to develop such a knowledge thus allowing tourism studies to benefit from a more 
appropriate approach. The aim of this chapter is to briefly present and discuss the most common 
and used techniques (namely: agent-based modeling, non-linear analysis of time series and 
network analysis), their main aims and tools. Further, it aims at providing information on the 
requirements that these techniques in terms of data collection and software applications. In 
doing this, examples from recent literature are described, and implications for a ‘good 
governance’ practice are suggested. Finally, the main conclusion from these studies are 
mentioned and a number of suggestions for future research are provided. 
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2.1 INTRODUCTION 

 

Tourism systems, and tourism destinations in particular, can be defined in many ways and using 
different approaches (Pearce, 2014); however, it is widely recognized that they can be considered as 
being complex dynamic systems composed of different entities (companies, associations, etc.) and 
resources interacting in nontrivial and complicated ways for satisfying needs and wishes of its users 
(Baggio, Scott & Cooper, 2010b). 
 



From a management point of view, tourism destinations may be considered as being strategic 
business units (Bieger, 1998), thus representing the main unit of analysis (Framke, 2002) and the 
main target for the implementation of tourism policies (Pearce, 2014). The analysis of structural and 
dynamic characteristics of tourism destinations enables to understand broad issues which affect 
tourism and to better take into account the relationships between its different components (Page & 
Connell, 2006). 
 
Destinations are essentially socioeconomic networks, comprising an ensemble of dynamically 
interacting stakeholders, jointly producing the experience for the travelers to consume (Baggio et al. 
2010b; Del Chiappa & Presenza, 2013); therefore, the harmonization and coordination of these 
stakeholders is a fundamental element for their governance (Bregoli & Del Chiappa, 2013). The 
effectiveness of governance highly impacts on the development of tourism destinations (Moscardo, 
2011), and ensures a balanced and continuing sustainable growth, and is fundamental for the 
destination competitiveness. 
 
Managing and governing a complex system is notoriously a daunting task that requires a sound 
knowledge of the structural and dynamic characteristics of the system. This knowledge can be 
obtained by using a number of different methods based on the idea that a systemic holistic view is 
more suitable than traditional reductionist approaches; this perspective is rooted in the research 
tradition of what is today known as complexity science. 
 
Many proposals have been put forward for the investigation of complex systems and some have 
been successfully applied to tourism destinations. The objective of this chapter is to briefly present 
and discuss the most common and used techniques (agent-based modeling, nonlinear analysis of 
time series and network analysis). In doing this, examples from recent literature will be provided, 
and implications for a “good governance” practice will be suggested. 
 
2.2 COMPLEX TOURISM SYSTEMS 

 

A complex system is an entity composed of a set of elements interacting with each other and with 
the external environment in dynamic nonlinear ways. The most common and universally recognized 
characteristics of complex systems are as follows (Brodu, 2009): 
 

• the number (and types) of elements and the number of relationships between them are 
nontrivial (i.e., not too small but not necessarily huge); 

• the relationships between the different parts of the system and with its environment are 
nonlinear; 

• the system has a memory or includes feedback and adapts itself by changing its 
configuration according to its history or feedback; 

• the system can be influenced by, or can adapt itself to, its environment (the system is 
open) in unexpected and nontrivial ways; and 

• the system is highly sensitive to initial conditions. 
 



The system evolves continuously redefining its configuration and functions; it may exhibit an 
intricate mix of ordered and disordered behaviors and show emergent phenomena which are 
generally surprising and, at times, extreme. Depending on certain conditions the system may also 
exhibit a chaotic behavior (Bertuglia & Vaio, 2005). 
 
The analysis of complex systems needs different approaches from those traditionally used. When a 
system is sufficiently simple, it can be analyzed by decomposing it; its parts are examined 
individually and the outcomes are recomposed in order to derive the characteristics of the whole. 
The same method (known as reductionist) can be theoretically adopted even when a huge number of 
elements are present provided the relationships are linear. However, when a system is complex, or 
in time frames in which the system undergoes abrupt and critical transitions, a reductionist approach 
is unable to give meaningful results (Baggio, 2013). As a consequence, we do not have a definite 
‘metric’ able to measure the phenomena we want to study. It is possible, however, to understand the 
properties of collective phenomena because in most situations they do not depend on the exact 
microscopic details of the processes involved. Rather, for many questions it is sufficient to consider 
only the most important features of single elements, and sometimes only higher level features such 
as symmetries, dimensionality, or conservation laws play a relevant role for the global behavior. In 
order to generate quantitative statements, and to relate the statistical laws to the microscopic 
properties of the system, these models need to be calibrated with empirical data measured from real 
systems (Castellano, Fortunato & Loreto, 2009). 
 
We study a system, a tourism destination in our case, because we want to predict its behavior in the 
future and assess the possibility to intervene in some way in order to drive the system toward a 
certain configuration (or state). As complex system, a tourism destination would need a high 
number of variables for its description; in technical words, the system is embedded in a high-
dimensional space (the many variables) called phase space. One point in this space represents a 
certain configuration of the system. If the system evolves, all the different points form a path which 
represents the dynamical evolution of the system. In its evolution, a system can assume several 
different configurations, often identified by the values of some parameter (order parameter) that 
differentiate its behavior. One or more of the variables can be modified (endogenously or 
exogenously) and the system’s reaction may be more or less strongly affected by these 
modifications. In a complex or chaotic system these changes may result in the system undergoing 
some kind of abrupt transformation, shown as jumps or discontinuities in the phase space paths. 
These critical phase transitions are the points where no full knowledge or predictability of the 
system is possible (Baggio, 2008). 
 
In its dynamic evolution the system may go from a completely ordered and stable phase to one in 
which the dynamic behavior is so heavily dependent on small variations of the initial conditions 
that, although deterministically shaped, appears completely irregular: the chaotic phase. The region 
at the boundary of these phases, known as the edge of chaos, is a region of complexity (e.g., 
Waldrop, 1992). In this region, small variations in the conditions can lead to unpredictable and 
unrepeatable outcomes. New properties or structures can emerge and it is difficult to determine 
accurately how a manager can act or to what extent there is a possibility to effectively steer the 
system. Yet, this is an important phase: one that ensures adequate dynamicity for allowing the 
growth of the system or for giving it sufficient robustness to resist shocks. 



 
As a living organism, a complex system, a tourism destination in our case, is always a dynamic 
entity; it reaches a stable static equilibrium only when it is dead (e.g., Ulgiati & Bianciardi, 1997). 
Predictability and tractability of the system depend on what type of evolution occurs in the time 
frame considered and on the time scale, or spatial scale, used for the investigation. Ideally we may 
want to project it on a lower dimensional space with fewer variables. Several techniques exist that 
allow this projection, but, obviously, the lower the space dimension, the higher the information lost. 
Whether this is acceptable or not will depend on whether the approximation made is still able to 
provide a meaningful description of the system (Sornette, 2008). Many diverse methods have been 
proposed for the analysis of a complex system and the toolbox of the complexity scientist is today 
quite crowded. Many of them originate from the work of 19th century scientists, but, since they rely 
on quite extensive calculations, only modern computational facilities have made it possible to use 
them in practical contexts. 
 
As can be easily guessed, a complex system such as a tourism destination is difficult to be managed 
and governed. Due to its strong self-organization capabilities, a rigid deterministic, authoritarian 
style can be ineffective or even disruptive for the system. When direct and linear cause and effect 
relationships lose full validity, long-term planning is almost impossible. There may be a need for 
strong rules or policies, but given the inherent unpredictability (or low predictability) the most 
important element is to develop the capability to change them dynamically, to react in short times to 
all the changes that may occur in the system and in the external environment, to monitor the effects 
generated by the decisions made and use these to re-orient the future actions (Farrell & Twining-
Ward, 2004). Further, when a tourism destination is considered, it is possible to adopt the idea that 
systems do not only adapt to their environments, but help creating them (Stacey, 1996). 
 
Despite these difficulties, it is still possible to manage and understand complex systems, at least at 
some level. Large-scale behaviors might still be foreseeable if it is possible to describe the overall 
dynamics of the system including the presence of any preferred evolutionary paths. Once these have 
been identified, it can be possible to determine whether changes in some specific parameter can 
produce sudden shifts in behavior, or at least establish a probability distribution for their occurrence 
(Hansell, Craine & Byers, 1997). Short-term predictions allow identification of the main 
evolutionary paths and small corrections to the system behavior that may be effective in avoiding 
undesired regimes. 
 
2.3 THE STUDY OF COMPLEX SYSTEMS: A METHODOLOGICAL OVERVIEW 

 

According to Amaral and Ottino (2004), we can group the approaches for studying a complex 
system in three main classes: statistical physics, nonlinear dynamics, and network theory. 
 
2.3.1 Statistical Physics 
Statistical physics is one of the fundamental fields of physics, and employs statistical methods for 
addressing physical problems that concern systems with a large number of components. It provides 
a rigorous framework for relating the microscopic properties of individual “particles” to the 
macroscopic ones of objects and system observed in everyday life. Statistical physics is the strong 



theoretical framework that justifies all the methods discussed here for the study of a complex 
system. Specifically, one important outcome is the possibility to use discrete models such as 
individual–based models and agent-based models (ABMs) (e.g., Baggio, 2011a). The fundamental 
assumption is that a phenomenon can be modeled numerically in terms of some appropriate 
algorithm, usually implemented as a computer program, rather than with analytical expressions. 
 
2.3.2 Nonlinear Dynamics 
The main feature of complex systems is the nonlinearity of the interactions among the components. 
The equations describing its behavior can be solved only in very rare cases. Poincaré’s (1883) work 
on the impossibility to fully describe analytically a gravitational system containing more than three 
bodies is considered the starting point of a study tradition in nonlinear dynamics. Since then, a 
number of mathematical techniques have been developed to approximate the solutions of the 
differential equations used to describe such systems. However, only the availability of modern 
powerful computers has made it possible to find solutions since, in almost all cases, they are 
obtained by numerical approximations. Much of the mathematics of chaos theory, for example, 
involves the repeated iteration of simple formulas, which would be impractical to do otherwise 
(e.g., Gharajedaghi, 2006). 
 
2.3.3 Network Science 
A complex system can be described as a network of interacting elements. Understanding the 
structure and the dynamics of the relationships and the interactions among the elements in a 
complex system is a key step to comprehend its structure and dynamic behavior. The collective 
properties of dynamic systems composed of a large number of interconnected parts are strongly 
influenced by the topology of the connecting network. 
 
A network is made of nodes or vertices, which can be used to represent the system’s elements, and 
links or edges, which usually correspond to the interactions or relationships between the elements. 
In this context, networks represent the structure of complex systems, but a network can also be used 
to represent the dynamics or the functions of a complex system (e.g., when interpreting nodes as 
states and links as transitions). Thus, a network analysis can be applied to the structure and the 
function of a complex entity. Understanding the relationship between structure and function is one 
of the major open questions in any discipline, which can, often, be examined by looking at how 
changes in the structure (topology) of a network affects its state (Baggio et al. 2010b; Baggio, Scott 
& Cooper, 2013; da Fontoura et al., 2011; Dominici & Levanti, 2011; Newman, 2010). 
 
2.4 MAIN ISSUES IN THE APPLICATION OF COMPLEXITY SCIENCE 

 

Two issues are relevant when approaching the study of a complex system. The first concerns the 
choice of methods to be used, the second regards the collection of the data needed for the analysis. 
As far as the first issue is concerned, it should be noted that when studying complex system the 
traditional dichotomy between qualitative and quantitative methods, each with its own advantages 
and disadvantages (e.g., Veal, 2006), is meaningless and can even be dangerous. No matter how 
sophisticated and effective the techniques used can be; they have little value when applied to a 
complex system without coupling them with sound physical interpretations. Adopting the language 



of social science, this means that a thorough knowledge of the object of analysis is crucial to obtain 
meaningful outcomes from both a theoretical and a practical point of view. A pure qualitative 
investigation risks missing or misinterpreting important factors, because the quantitative analysis 
often provides rather unexpected outcomes. This is even more relevant when employing numerical 
simulation techniques. If correctly used, simulations are a powerful tool, but the basic assumptions 
must represent as faithfully as possible the reality and a good comprehension of what will be 
simulated is crucial. 
 
A reliable model, especially when dealing with a complex system, needs continuous interactions 
between researchers and empirical issues (Silvert, 2001). For those interested or involved in 
managing a destination, the combination of both traditional qualitative evaluations and quantitative 
measurements can give more strength to the decisions made and better inform the actions and 
policies needed (e.g., Baggio et al. 2010a; Pearce, 2014). Finally, a good integration of quantitative 
and qualitative methods can help in a substantial way in finding different, new and more effective 
ways to better understand systems and phenomena under study (Gummesson, 2007; Olsen, 2004). 
The second issue faced when analyzing complex systems is related to the quality and the quantity of 
data needed. Obviously, data quality is important, as ignoring even small variations can hide effects 
that may develop rapidly to important consequences, and approximate evaluations risk inhibiting a 
full recognition of the nonlinear effects that characterize complex dynamic systems (Batini & 
Scannapieco, 2006). More than that, however, the quantity of observations can be a crucial issue. 
Indeed, as it will be better explained in the next sections, some techniques (e.g., those using time 
series) are ‘data hungry’. They ask for a large number of data points, typically not widely available 
in the tourism arena (e.g., Baggio & Sainaghi, 2011). Other methods (e.g., network analysis) call for 
a possibly complete set of data, representing fully the system examined. As a matter of fact, due to 
the strong nonlinearity and non-normality of the quantities involved, traditional sampling methods 
are mostly meaningless and the likelihood to overlook or disregard important factors is quite high 
(e.g., Kossinets, 2006). 
 
2.5 THE ANALYSIS OF COMPLEX TOURISM SYSTEMS 

 

This section is dedicated to the main methods used for analyzing and assessing complex or chaotic 
characteristics in a tourism system. 
 
2.5.1 Nonlinear Analysis of Time Series 
The object of study in nonlinear dynamics is a time series that contains a certain number of 
quantities related to some behavior of the system under investigation. In tourism studies, logging of 
arrivals, overnight stays, or other similar quantities are usually used for depicting the history of a 
destination, predicting its future development, and interpreting its evolution (e.g., Butler, 1980). 
Here, a time series is seen as the representation of the system’s behavior and is used to assess a 
number of traits about the nature and the extent of the complexity or chaoticity of the system. 
Most of the methods give reliable and meaningful results only with relatively long series (typically 
more than some thousand values); unfortunately datasets of this size are not very common in 
tourism studies. The frequency with which data are collected is another relevant aspect; if it is too 
low, an interesting dynamic pattern may be lost, while if it is too high, the number of values risks 



increasing the computational time needed without need. Only the experience will guide researchers 
and practitioners toward the “ideal” solution; “this is more an art than a science, and there are few 
sure-fire methods. You need a battery of tests, and conclusions are seldom definitive” (Sprott, 2003, 
p. 211). Despite this, an accurate use of the techniques available has shown to provide a wealth of 
interesting insights into the structural and dynamic patterns of complex and chaotic systems (e.g., 
Baggio & Sainaghi, 2011). 
 
When dealing with a time series, trend and seasonality components may corrupt the outcomes of the 
measurements by adding strong effects to the recording of system’s internal dynamics (e.g., Clegg, 
2006); in order to remove these effects the series needs to be filtered. However, many classical 
techniques make some type of “linear” assumptions, which may be not fully appropriate in the case 
of a complex system, it is better to use some method which uses directly the data without any 
“external” intervention (such as defining the length of a season). An example of this method is the 
Hodrick–Prescott filter (Hodrick & Prescott, 1997), a nonparametric, nonlinear algorithm which 
acts as a tunable bandpass filter controlled by a parameter λ. The effect is the identification of long-
term trend components without affecting too much short-term fluctuations. High values for λ give a 
smooth long-term component (in the extreme cases: λ = ∞ produces a line, λ = 0 leaves intact the 
observed values). The literature suggests as optimal choice λ the values: 14,400, 260,100, and 
6250,000 for monthly, weekly, and daily data, respectively (e.g., Baggio & Klobas, 2011). Once 
filtered, the series can be examined to assess whether it originates from a linear or a nonlinear or 
chaotic process. A common procedure is the Brock, Dechert, and Scheinkman (BDS) test that 
checks whether a given signal is deterministic (chaotic) or stochastic (Brock, Dechert, Scheinkman 
& LeBaron, 1996). 
 
A chaotic system is characterized by a great sensitivity to initial conditions; in other words, it has a 
long memory. This attribute can be assessed by adopting a method due to Harold Edwin Hurst 
(Hurst, 1951). The mathematical definition of long-memory processes calls for the evaluation of the 
autocorrelation function p(k) of the time series (k is the lag). When long memory is present, p(k) 

decays following a power law: p(k)  k-α. The quantity H = 1 − α/2 is called Hurst exponent and its 
value ranges between 0 and 1. If H = 0.5, the time series is similar to a random walk; when H < 0.5, 
the time series is antipersistent (i.e., if values increase, it is more probable that they will decrease in 
subsequent periods, and vice versa); if H > 0.5, the time series is persistent (if the time series 
increases, it is more probable that it will continue to increase). Values higher than 0.5 therefore 
characterize systems with a long memory and thus show a tendency to be chaotic. The calculation 
of H can be performed by using a number of different methods, again, all having their specificities, 
power, and reliability in different conditions (e.g., Clegg, 2006). The Hurst exponent can also been 
used as a measure of complexity: the lower its value, the higher the complexity of the system 
(Giuliani, Colafranceschi, Webber, & Zbilut, 2001). 
 
An attractor in the phase space is, as sketched above, a trajectory of stability for a complex system. 
The tendency of a system to follow one of these paths can clearly provide interesting information 
about its dynamics, and provide one more measure of the sensitive dependence on initial conditions, 
that is of its chaotic (or potentially chaotic) behavior. In the study of the stability of motion of a 
low-dimensional physical system, Aleksandr Mikhailovich Lyapunov (1892) proposed a way to 
assess the rate of convergence between two orbits when one of them had been perturbed. The 



quantities calculated, called Lyapunov exponents, depend on the equations of the orbits (e.g., the 
system’s path and a reference orbit) and on the dimension of the phase space in which the system is 
embedded. The largest exponent [Lyapunov characteristic exponent (LCE)] gives the most 
important information on the system’s motion. When LCE < 0, orbits converge in time and the 
system is insensitive to initial conditions. If LCE > 0, the distance grows exponentially in time, and 
the system tends to go away from the stable attractor and exhibits sensitive dependence on initial 
conditions. In the case of a real system, for which we have a time series representing it, it is possible 
to calculate LCE by using some numerical methods (e.g., Wolf, Swift, Swinney & Vastano, 1985). 
When using these methods, it is important to have a null model in order to help the interpretation of 
the results (here we do not have a clear hypothesis to test via a p-value). In chaos theory, one well-
known system of such kind is the one described by Lorenz (1963). A series obtained from some 
solution of his equations is a good null model; since the Lorenz equations are in the three-
dimensional space one of the components needs to be used. 
 
As said, all these methods are used by means of a computer application. A useful list of programs is 
the following: 
 

 Hodrick—Prescott filter: Matlab script by W. Henao, available at: 
http://www.mathworks.com/matlabcentral/fileexchange/3972-hodrick-prescott-filter 

 BDS test: Matlab script by L. Kanzler, available at: 
http://econpapers.repec.org/software/bocbocode/t871803.htm 

 Hurst exponent: Matlab scripts by C. Chen, available at: 
http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate 

 Lyapunov characteristic exponent: Matlab script by S. Mohammadi, available at: 
http://ideas.repec.org/c/boc/bocode/t741502.html 

 Lorenz time series: Matlab scripts by E. A. Wan , available at: 
http://www.bme.ogi.edu/~ericwan/data.html 

 
All the outcomes of the analyses described here need a sound qualitative interpretation in order to 
provide useful insights. These methods, although not frequently used in tourism studies, have 
anyway provided some interesting results from both a theoretical and a practical point of view. 
Basically, they assess the extent to which a destination system (or even a single stakeholder) is 
dynamically stable, thus allowing a better choice of the actions that could be adopted without 
contrasting with the self-organization tendencies of the system. In turn, this guarantees a higher 
probability to be effective (e.g., Baggio & Sainaghi, 2011). 
 
2.5.2 Agent-Based Modeling 
ABMs are useful tools for the simulation of a complex system. Applications exist in many fields of 
physical, chemical, biological, and social sciences; propagation of fire, predator–prey models 
diffusion of diseases, demographic phenomena or the evolution of natural, and artificial 
organizations can be represented with ABMs (e.g., Baggio & Baggio, 2013). 
 
In ABMs, agents are programmed in order to obey predetermined rules, reacting to certain 
environmental conditions, interact between themselves, and be able to learn and adapt (Gilbert & 



Terna, 2000). The interactions are asynchronous and the global behavior emerges as a cumulative 
result of these local interactions. A researcher using computer simulated ABMs to represent real 
systems uses a model-building process that can be outlined as follows (Galán et al. 2009): 
 

 conceptualize the system defining the research question and identifying the crucial 
variables along with their interrelations; 

 find a set of formal specifications that is able to fully characterize the conceptual 
model; 

 code and implement by using an appropriate development environment. 
 
The resulting model is iterative, every agent receives input from the environment, processes it, and 
acts generating a new environmental input until a pre-determined condition is met (e.g., time limit, 
all agents in a given condition, etc.). 
 
For the development of ABMs, a number of software applications exist that use relatively simple 
scripting languages and provide all the facilities needed to run the model and to record the 
outcomes; NetLogo (ccl.northwestern.edu/netlogo) is one of these. However, an ABM can be 
implemented with any programming language. 
Validating, verifying, and evaluating ABMs is a crucial task, since simulation behaviors are 
difficult to grasp at first. For this purpose, several criteria have been proposed. The first one is an 
assessment of its reliability by allowing for different separate implementations and a subsequent 
comparison of the results. Taber and Timpone (1996) propose three steps for the validation of a 
numerical simulation model that can be rendered as answers to the following questions: 
 

 Do the results of a simulation correspond to those of the real world (when data are 
available)? 

 Does the process by which agents and the environment interact correspond to the one that 
happens in the real world (when they are known)? 

 Is the model coded correctly so that it is possible to state that the outcomes are a result 
solely of the model assumptions (i.e., is the computer program free from evident errors)? 

 
In the tourism field, AMBs have been used for different purposes. On one hand, they have been 
implemented for studying certain processes or examining certain phenomena such as the analysis of 
the effects of asymmetric information digital market on buyers and sellers’ satisfaction and earnings 
is an example (Baggio & Baggio, 2013). On the other hand, ABM systems have been created to 
analyze and predict tourism related phenomena in tourism destinations (e.g., Baggio, 2011a; 
Johnson & Sieber, 2010). 
 
2.5.3 Network Analysis 
Tourism destinations can be considered as socioeconomic networks, with groups of interacting 
players that are related one to another. Literature has provided an extensive set of mathematical 
tools for analyzing networks and the graphs they represent. Realizing that a social or economic 
group can be represented by detailing the stakeholders of the group and their mutual relationships, 
sociologists have used some of these methods to explore their patterns of relations (Freeman, 2004). 



Today, the network science toolbox can rely on several metrics (e.g., da Fontoura Costa et al. 2007; 
Newman, 2010) obtained by combining those coming from the social network analysis tradition 
with those developed in more recent mathematical studies. The main measurements that can be used 
to fully characterize topology and behaviors of a complex network are as follows: 
 
 degree: the number of links each node has, and degree distribution, the statistical distribution 

of links and degree distribution: the statistical distribution of the number (and sometimes the 
type) of the linkages among the network elements; 

 assortativity: the correlation between the degrees of neighbor nodes; 
 average path length: the mean distance (number of links) between any two nodes and 

diameter, the maximal shortest path connecting any two nodes; 
 closeness: the mean weighted distance (i.e., the shortest path) between a node and all other 

nodes reachable from it; 
 betweenness: the extent to which a node falls between others on the shortest paths 

connecting them; 
 clustering coefficient: the concentration of connections of a node’s neighbors: it provides a 

measure of the heterogeneity of the local density of links; 
 eigenvector: calculated by using the matrix representation of a network and its principal 

eigenvector, and based on the idea that a relationship to a more interconnected node 
contributes to the own centrality to a greater extent than a relationship to a less well 
interconnected node. One variation of this measure is the well-known PageRank; 

 efficiency (at a local or global level): which can be interpreted as a measure of the capability 
of the system to exchange information over the network;  

 modularity: the quality of a partition of the network into modules or communities. High 
values of modularity are found when the connections between the nodes within modules are 
denser than those between nodes belonging to different modules (Fortunato, 2010). 
 

At a local (nodal) level the metrics described assume, often, the meaning of importance attributed to 
the single actors (they are also called centrality measures). Actors can be important if they have 
many connections (friends) or can quickly reach all other actors in the network (closeness) or are a 
bridge or information broker between different parts of the network (betweenness), or because their 
local neighborhoods are well connected (clustering coefficient). Moreover the actor’s importance 
can be greater if the connections are set, even indirectly, toward the other most important elements 
of the network (eigenvector, PageRank). Several software programs allow calculating the main 
metrics. Some of them (such as NodeXL, Pajek, Gephi, Ucinet, etc.) can be used for general 
purposes, while some others have been developed for specific tasks, or are libraries to be used by 
some programming language (e.g., Matlab, R, or Python). 
 
Network analyses in tourism have highlighted a series of interesting outcomes. The first application 
concerns the topological characterization and the identification of the structural peculiarities of a 
tourism destination (Baggio et al. 2010b; Bendle & Patterson, 2008; Del Chiappa & Presenza, 2013; 
Grama & Baggio, 2014; Presenza & Cipollina, 2010; Scott, Cooper & Baggio, 2008). An effective 
assessment of the characteristics of the network would require to adopt this structural perspective 
with the relational one so that how the inter-organizational relationships influence the way different 
nodes can interact and collaborate with each other can be analyzed as well (Del Chiappa &Presenza, 



2013). These empirical studies unveiled complex structures with power-law degree distributions, 
very low density of connections, low clusterization, and negative degree–degree correlations (i.e., 
highly connected nodes tend to link low-degree elements). These latter features have been 
interpreted as symptom of the well-known tendency of tourism stakeholders to avoid forms of 
collaboration or cooperation. The related metrics (clustering and assortativity coefficients) have 
thus been proposed as quantitative measurements for these characteristics (Baggio, 2007; da 
Fontoura Costa & Baggio, 2009). This is an important result, because the identification of strategic 
weaknesses in the cohesiveness of the destination can be addressed by policy and management 
approaches (Erkuş-Őztürk & Eraydın, 2010). 
 
A modularity analysis has uncovered that some form of aggregations exist in a destination, even if 
not very well defined or highly significant. However, this community structure goes beyond preset 
differentiations (by geography or type) of the agents. In other words, companies of the same type 
(e.g., hotels), or in the same geographical area, tend to connect with some other company which 
runs a different business or are located in different localities (Baggio, 2011b). 
 
Network analysis methods have been applied also to the virtual network of the websites belonging 
to destination’s stakeholders, with results that are similar to those obtained by studying the real 
destination network (Baggio, 2006, 2007; Baggio, Scott & Wang, 2007; Piazzi, Baggio, Neidhardt, 
& Werthner, 2012). This has allowed to gauge the level of utilization of advanced communication 
technologies among the actors in a destination and measure the extent to which they exploit (or 
waste) resources universally deemed to be crucial for today’s survival in a highly competitive 
globalized market. Moreover, it has been possible to show the structural integration between the 
virtual and the real components in a destination. This gives more strength to the idea that a digital 
ecosystem needs to be fully considered when dealing with tourism activities at a destination 
(Baggio & Del Chiappa, 2014b). 
 
The substantial similarity of the main topological characteristics, coupled with considerations on the 
mechanisms with which corporate websites are interlinked, has then suggested the important 
conjecture that the World Wide Web can provide an efficient and effective way to gather significant 
samples of networked socioeconomic systems to be used for analyses and simulations (Baggio et al. 
2010b). 
 
One more interesting outcome is the possibility to identify the most relevant members in a 
destination: those who are reputed to give the most important contribution to the tourism activities 
(Cooper, Scott & Baggio, 2009; Presenza & Cipollina, 2010). Also some important features such as 
the creativity and innovation potential of the destination or the productive performance of single 
stakeholders have been related to the network configuration through some of its quantitative 
peculiarities (Baggio, 2014; Sainaghi & Baggio, 2014). An advantage of a network representation 
of a complex system is that it is possible to perform numerical simulations. Different configurations 
can be conceived and several dynamic processes simulated in order to better understand how these 
configurations influence the behavior of the whole destination system. 
 
Information and knowledge flows in a destination network are relevant determinants of the health 
of the system. Productivity, innovation and growth are strongly influenced by them, and the way in 



which the spread occurs affects the speed by which individual actors perform (Argote & Ingram, 
2000). A common technique to study the problem is based on an analogy with the diffusion of a 
disease (Hethcote, 2000), which can be implemented using a network as substrate. It has been 
shown, in fact, that the structure of the network is highly influential in determining the unfolding of 
the process (López-Pintado, 2008). These methods have been used in tourism to show the effects of 
possible modifications in the network structure on the extent and the speed of information diffusion 
or knowledge sharing (Aubke, Wöber, Scott, & Baggio, 2014; Baggio & Cooper, 2010). Based on 
this strand of research and on the one on digital ecosystem, Baggio & Del Chiappa (2014a) assessed 
the opinion and consensus dynamics in tourism destinations and proved that a structurally strong 
cohesion between the real and the virtual components of a destination do exist. It could be argued 
that current research on diffusion models is still limited; future efforts would be useful to deepen the 
knowledge in this area (Baggio, 2011c). 
 
2.6 CONCLUSION 
 
This chapter showed how the analysis and management of tourism destinations can benefit from 
adopting principles and methods rooted in the interdisciplinary approach of complexity science. To 
do this, some of the most common and used techniques were presented, describing, for each of 
them, aims, tools, and software that can be used to apply them along with the requirements for data 
collection. Specifically, three different families of methods were considered: agent-based modeling, 
nonlinear analysis of time series, and network analysis; these are summarized, along with their main 
purpose in Table 2.1. 
 

TABLE 2.1 Methods for the Analysis of Complex Dynamic Systems. 

Method Data used Main purpose 
Agent-based models Actors (single entities) 

Rules that define local 
interactions between agents 

Simulation of large scale 
behaviors 
Production of scenarios 

Nonlinear analysis of time 
series 

Time series of systems’ 
observable characteristics 

Diagnosis of complex and/or 
chaotic dynamics 

Network analysis Graph of actors and 
relationships 

Structural characteristics of the 
system 
Basis for dynamic processes 

 
This contribution also underlined that mixing qualitative and quantitative methods and 
simultaneously considering the real and virtual components of tourism destinations would be 
beneficial in supporting researchers and practitioners in their attempt to obtain a better picture of the 
structure, the evolution, the outcomes, and the governance of the system as a whole. 
Finally, the need for an additional refinement of the described methods, both from a theoretical and 
practical point of view, was highlighted, thus calling for further research and empirical 
investigations in order to validate them. As stated by San Miguel et al. (2012: 268), however, the 
challenge is strong and includes: 
 

“data gathering by large-scale experiment, participatory sensing and social computation, and 
managing huge distributed dynamics and heterogeneous databases; moving from data to 



dynamical models, going beyond correlations to cause-effect relationships, understanding the 
relationship between simple and comprehensive models with appropriate choices of variables, 
ensemble modeling and data assimilation, and modeling systems of systems of systems with 
many levels between micro and macro; and formulating new approaches to prediction, 
forecasting, and risk, especially in systems that can reflect on and change their behavior in 
response to predictions, and systems whose apparently predictable behavior is disrupted by 
apparently unpredictable rare or extreme events.” 

 
This also suggests that these new promising approaches can be effectively used to more deeply 
investigate the dynamics and evolution of tourism destinations and the dynamic processes, such as 
consensus building and knowledge creation and diffusion that occur on them. 
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