
Knowledge transfer in a tourism destination: the effects
of a network structure†

Rodolfo Baggioa∗ and Chris Cooperb

aMaster in Economics and Tourism, and Dondena Centre for Research on Social Dynamics, Bocconi
University, via Sarfatti, 25, Milan 20136, Italy; bOxford Brookes University, Wheatley Campus,

Wheatley, Oxford, OX33 1HX, UK

(In final form 30 November 2009)

Tourism destinations have a necessity to innovate in order to remain competitive in an
increasingly global environment. A pre-requisite for innovation is the understanding
of how destinations source, share and use knowledge. This conceptual paper
examines the nature of networks and how their analysis can shed light upon the
processes of knowledge sharing in destinations as they strive to innovate. The paper
conceptualizes destinations as networks of connected organizations, both public and
private, each of which can be considered as a destination stakeholder. In network
theory, they represent the nodes within the system. The paper shows how epidemic
diffusion models can act as analogies for knowledge communication and transfer
within a destination network. These models can be combined with other approaches
to network analysis to shed light on how destination networks operate, and how they
can be optimized with policy intervention to deliver innovative and competitive
destinations. The paper closes with a practical tourism example taken from the Italian
destination of Elba. Using numerical simulations, the case demonstrates how the Elba
network can be optimized. Overall, this paper demonstrates the considerable utility of
network analysis for tourism in delivering destination competitiveness.
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Introduction

Knowledge transfer, cultural variables and social embeddedness are key determinants

of global competitiveness for advanced regions and nations, and foster a transformation

of capitalism toward a ‘knowledge economy’ (Dayasindhu, 2002; Tödtling, Lehner, &

Trippl, 2006; Uzzi, 1996). Tourism is basically a service industry and its management

practices are highly focused on the efficiency and effectiveness of the information and

knowledge exchanges that happen between the different organizations that need to

collaborate to deliver composite products (Otto & Ritchie, 1996). In this respect, it can

be argued that in the global tourism market it is destinations, not individual businesses,

that compete to attract more customers (Ritchie & Crouch, 2003).

In the twenty-first century, tourism destinations have an imperative to innovate and

remain competitive in an increasingly global competitive environment. A pre-requisite
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for innovation is the understanding of how destinations source, share and use knowledge.

However, the majority of the knowledge management literature and applications are con-

cerned with individual organizations rather than the complex amalgams of organizations

that characterize destinations. Of course, the focus on the individual organization can be

applied to tourism enterprises, destination management organizations, and government

ministries and departments. On the other hand, if knowledge management is to be an effec-

tive tool in tourism innovation, then we also need to consider how it can benefit the desti-

nation level of the organization. This conceptual paper examines the nature of networks

and how their analysis can shed light upon the way that destinations can share and

benefit from knowledge as they strive to innovate and be competitive. It therefore is

intended as a theoretical contribution, introducing the concepts of network analysis,

network metrics and epidemic diffusion models, and it aims to demonstrate the utility

of these approaches for understanding how destinations function.

Knowledge and networks

There are to date, only a small number of examples and applications of knowledge manage-

ment across destination networks (Baggio, 2007; da Fontoura Costa & Baggio, 2009; Scott,

Baggio, & Cooper, 2008a, 2008b). However, recognition of the significance of the approach

is growing as practitioners recognize the value of knowledge sharing not just within the

organization, but also through networks, and in particular, the encouragement of partnerships

within destinations. It is characterized by the fact that the early phases of knowledge

management were portrayed by the phrase ‘knowledge is power’. The new thinking

argues, ‘sharing is power’ and creates ‘communities of knowledge’ at the destination level.

Destinations as networks of organizations

Tourism, more than most economic sectors, involves the development of formal and

informal collaboration, partnerships and networks to deliver the product. In one Australian

study, tourism was found to be the economic sector with the most inter-organizational

networks (Bickerdyke, 1996). A significant tourism literature on these topics exists in

the discussion of partnerships and collaboration (Bramwell & Lane, 2000; Hall, 1999;

Selin, 2000; Selin & Chavez, 1995) and networking (Copp & Ivy, 2001; Halme, 2001;

Tinsley & Lynch, 2001; Tyler & Dinan, 2001). Indeed, one stream of the tourism literature

examines tourism (Leiper, 1990), destinations (Carlsen, 1999) and market niches (Scott &

Laws, 2004) as a system of interrelated components.

The view of destinations as networks, and more generally as complex dynamic systems

(Baggio, 2008), is amenable to analysis using techniques such as social network analysis.

A social network has been defined as a specific set of linkages among a defined set of

persons, with the additional property that the characteristics of these linkages as a

whole may be used to interpret the social behavior of the persons involved (Mitchell,

1969). Social network analysis delivers a number of useful outcomes. It provides a

means of visualizing complex sets of relationships and simplifying them and is therefore

useful in promoting effective collaboration within a group, supporting critical junctures

in networks that cross-functional, hierarchical or geographic boundaries; and ensuring

integration within groups following strategic restructuring initiatives (Cross, Borgatti, &

Parker, 2002). In recent times, these analysis methods have been applied to the tourism

sector and have provided interesting insights (Baggio, 2007; da Fontoura Costa &

Baggio, 2009; Scott et al., 2008a, 2008b).
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Destination stakeholders

A second concept that must be considered in understanding destinations as networks of

organizations is that of the stakeholder. The concept is related to changing public sector

governance as well as participatory management in the private sector. Stakeholders are

the people who matter to a system. A stakeholder is any person, group or institution

that has an interest in a development activity, project or program. This definition includes

intended beneficiaries and intermediaries, winners and losers, and those involved or

excluded from decision making processes (SDI, 1995).

Stakeholder theory, pioneered by Freeman (1984), suggests that an organization is

characterized by its relationships with various groups and individuals, including employees,

customers, suppliers, governments and members of the communities. According to

Freeman (1984, p. 46): ‘[a] stakeholder in an organization is (by definition) any group

or individual who can affect or is affected by the achievement of the organization’s

objectives’.

Thus, a group qualifies as a stakeholder if it has a legitimate interest in aspects of the

organization’s activities and, thus, according to Freeman, has either the power to affect the

firm’s performance and/or has a stake in the firm’s performance. Hence, the concept of a

stakeholder is related to the concept of participative government and the growth of

community activism. Interestingly, identification and consultation with stakeholders

originally started as a means of increasing the effectiveness of business but has come to

be seen as a matter of business ethics and principles (Sautter & Leisen, 1999).

In the discussion here, stakeholders are organizations that have some role in the

tourism destination. However, all stakeholders are not created equal. Stakeholders may

be classified both in terms of their individual characteristics as well as their characteristics

in relation to networks. A common approach to classifying stakeholders is to do this in

terms of key, primary and secondary stakeholders. Stakeholder analysis is a tool that

helps in an understanding of how operators affect the creation and dissemination of

information in a destination and the resultant policies and activities. It is particularly

useful in highlighting the challenges that need to be faced to change knowledge manage-

ment behavior, develop capabilities and tackle problems.

Networks and knowledge transfer

Information and knowledge flows in a destination network are relevant mechanisms for the

general behavior of the system. Productivity, innovation and economic growth are strongly

influenced by these processes, and the way in which the spread occurs can determine the

speed by which individual actors perform and plan their future actions at the destination; in

other words, the structure of the network will be influential in determining the efficiency of

the destination’s attempts to share knowledge and innovate, and so remain competitive

(Argote & Ingram, 2000).

The literature in this field has dealt with two main issues: the mechanisms and the pro-

cesses of knowledge acquisition within a single stakeholder (e.g. a company, association

or group) and the diffusion within the destination network formed by groups of

stakeholders, based on their similarity (e.g. industrial clusters), or their spatial location.

The topology of the destination network formed by the different stakeholders and their

formal and informal relationships has proved to be an important determinant when

explaining the mechanisms by which ideas, information and knowledge ‘travel’ from

one element of the system to another (Chen & Hicks, 2004; Da Costa & Terhesiu,

2005; López-Pintado, 2004; Valente, 1995).
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Social networks are the main channel through which these phenomena unfold. It has

been shown in many cases by sociologists and economists that a dense and well-formed

social network favors a stakeholder’s attitude to search for new opportunities and to

share experiences, particularly in the presence of dynamic unpredictable environments.

This has a beneficial effect on the development of the community in which they are

embedded (Inkpen & Tsang, 2005; Levin & Cross, 2004; Vega-Redondo, 2006). As an

example, Ingram and Roberts (2000) describe how the intense web of relationships

among managers of Sydney hotels has allowed the amalgamation of many best practices,

with the result of improving the performance and the profitability of their hotels. Social

network analysis tools have thus been used to study such phenomena and have proved

to be effective in explaining the general characteristics of networks (Birk, 2005; Cross,

Parker, & Borgatti, 2000; Cross et al., 2002).

Many theories have been proposed to describe and explain these diffusion processes.

The remainder of this paper is dedicated to a general overview of them and to the expo-

sition and discussion of a simple simulation model.

Epidemic diffusion models

The most commonly used models for the flow of knowledge or information through net-

works are based on an analogy with the diffusion of a disease (Bailey, 1975; Diekmann &

Heesterbeek, 2000; Hethcote, 2000). There is a clear analogy here between the trans-

mission of disease and the transmission of knowledge through a network. A long tradition

of epidemiology studies has dealt with the issue of describing the spread of a disease in a

population of living organisms. From Bernoulli’s (1766) analysis of smallpox at the end of

eighteenth century, mathematical modeling and numerical simulations have helped in the

study of the effects of bacterial, parasitic and viral pathogens, infections and the possible

countermeasures.

The mathematical models used are based on the cycle of infection in an individual. The

‘host’ is first considered susceptible (S) to the disease. Then, if exposed to the infection,

it becomes infected (I) and is considered infectious for a certain period of time. Finally,

the individual can recover (R) by acquiring some immunity or by being ‘removed’ from

the population. These basic elements (along with some possible variations) are used to

characterize the different models that are identified by the initials of the types of infection

considered. Therefore, we have SI models, in which hosts can be only susceptible or

infected; SIS models in which they go through a complete cycle: susceptible, infected,

then susceptible again; and SIR models which consider susceptible individuals that are

infected and end their process by being removed (i.e. immunized or eliminated from

the initial population). Again the analogy with knowledge flow through a destination

network is clear – stakeholders may be susceptible to receiving new knowledge, but

until they are ‘infected’ knowledge transfer does not take place.

The mathematical treatment has much in common with the one used to describe the

percolation phenomenon (the diffusion of a fluid through a porous medium). The curves

describing the results of the infection are mostly s-shaped curves belonging to the

family of logistic curves, and are in many cases similar to those representing the

growth of a population. Traditionally, all epidemic models have assumed perfect

mixing: i.e. all individuals are equally able to infect all others and have taken into

account a random distribution of the contacts between individuals that are responsible

for the infection (diseases spread through some kind of contact between the population

elements). In some cases, the models are refined by making assumptions about the
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population affected: e.g. the way the hosts react to the infection, recover from the disease

or are removed from the population.

Hosts in a population can be represented by the nodes of a network in which the contacts

constitute the links. Recent advances in the study of complex networks have allowed a

reconsideration of epidemic diffusion models to take into account the effects of non-

homogeneous network topologies (Kuperman & Abramson, 2001; Pastor-Satorras &

Vespignani, 2001, 2003). These effects are quite important. For example, it has been

known for a long time (Kermack & McKendrick, 1927) that the SIS model shows a

clearly defined threshold condition for the spread of an infection. This threshold depends

on the density of the connections between the different elements of the network.

However, this condition is valid only if the link distribution is of a random nature, while

in some of the structured, non-homogeneous networks that make up the majority of real

systems, this threshold does not exist. Once initiated, the diffusion process unfolds over

the whole network (Pastor-Satorras & Vespignani, 2001).

The formulation of an epidemiological model leads to the layout of a system of

differential equations that can be demanding. In the last few years, however, the avail-

ability of computational tools (both hardware and software) has fostered the development

and the usage of numeric simulation models. In what follows, we shall use this approach

to analyze a tourism case taken from Italy.

Network models

A long tradition, prompted by the 1736 paper by Leonhard Euler on the Königsberg

bridges, has provided a widespread set of mathematical tools for analyzing networks

and the graphs they represent. During the twentieth century, the ideas and techniques

developed for the study of these abstract objects have been applied to several fields. In

particular, realizing that a group of individuals can be represented by enumerating the

stakeholders of the group and their mutual relationships, sociologists have used some of

the methods belonging to graph theory to study their patterns of social relations

(Freeman, 2004; Wasserman & Faust, 1994). Furthermore, in the last decade, the commu-

nity of physicists and mathematicians has exploited the vast amount of data available

through the Internet to develop a whole new set of models. With these it has been possible

to describe the static, structural and dynamic characteristics of a wide range of both natural

and artificial complex networks (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006;

da Fontoura Costa et al., 2008; Watts, 2004).

The shape of a network and the relationship between its nodes, the network topology,

has been found to be a crucial determinant of the functions the system performs, and of

the quality of the communication between nodes. The literature on complex networks

proposes a number of different measurements with which it is possible to characterize

the network topology. Their calculation derives mainly from the work done by

mathematicians in graph theory and is based on a matrix representation of the links

between the network nodes (Bollobás, 1998; Godsyl & Royle, 2001). The rich set of

metrics used today originates from the combination of those coming from the tradition

of social network analysis with the outcomes of the recent work (Boccaletti et al.,

2006; Börner, Sanyal, & Vespignani, 2007; Bornholdt & Schuster, 2002). Some of

these are have been recognized to be the most important to fully characterize topology

and behaviors of a complex network and can be applied to destinations (Baggio, Scott, &

Cooper, 2008):
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. degree distribution P(k): the statistical distribution of the number (and sometimes

the type) of the linkages among the network elements;
. average path length L: the mean distance between any two nodes and diameter D:

the maximal shortest path connecting any two nodes. Small values for D and L

indicate good compactness of a network; at least, of its main connected component

(i.e. disregarding isolated nodes);
. clustering coefficient C: representing the concentration of the connection of the

node’s neighbors in a graph and giving a measure of the heterogeneity of local

density of links;
. efficiency (at a local Eloc or global Eglob level): which can be interpreted as a measure

of the capability of the system to exchange information over the network; and assor-

tativity: which gauges the correlation between the degrees of neighbor nodes. If

positive, the network is said to be assortative. In such a network, well-connected

elements tend to be linked to each other. This quantity, related to the clustering

coefficient, has been recently shown to influence directly the formation of strongly

connected sub-networks or communities and to give an indication of their strength

(Quayle, Siddiqui, & Jones, 2006).

The mathematical expressions for these quantities can be found in one of the recently

published reviews of the research in this area (Caldarelli, 2007; da Fontoura Costa,

Rodrigues, Travieso, & Villas Boas, 2007).

Computer simulations

In addition to describing and explaining phenomena, numerical simulations allow exper-

iments to be performed in fields where these would not otherwise be feasible for both

theoretical and practical reasons. A network is a system which may comprise a very

large number of elements and its topological characteristics have a direct relationship

with many dynamic processes. It would therefore be interesting to experiment with

different configurations to measure these effects in order to better understand how these

differing configurations influence the behavior of the whole destination system.

Social scientists have long used simulation techniques (Inbar & Stoll, 1972). The wide

availability of computing power and of efficient programming languages, coupled with a

much simpler access to data has, in recent decades, greatly enlarged the amount of

attention given to these methods and their practical uses (Castellano, Fortunato, & Loreto,

2009; Conte, Hegselmann, & Terna, 1997; Gilbert, 1999; Suleiman, Troitzsch, & Gilbert,

2000). A widely used environment to perform simulations is the series of toolkits developed

to implement agent-based models (ABM). The idea of such simulations is that a system is

composed of a number of entities (agents) which behave according to some simple rule

(Flake, 1998; Wolfram, 2002). The interactions of the agents can generate some global

system property, which can then be studied. Variations in the basic rules or in the typology

of the agents produce different final configurations for the system. The reliability and credi-

bility of these techniques are generally considered good, provided some basic requirements

are met: as recognized in the literature, the most important being the usage of a solid con-

ceptual model and the connection with the particular circumstances for which the simu-

lations are run. In other words: no absolute value can be given to such processes, as their

value will be dependent on the specific situation or the specific purpose (Küppers &

Lenhard, 2005; Law & Kelton, 2000; Schmid, 2005). With these caveats, these models

have proved to be both effective and efficient in reproducing different types of social and
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natural systems and may be considered a valuable aid in decision making (Tesfatsion &

Judd, 2006; Toroczkai & Eubank, 2005). A number of dedicated programs have been

developed to help with ABM simulations, and specialized software packages provide

libraries with functionalities at different levels of complexity.

Materials and methods

Based on the above discussion, we can consider the diffusion of knowledge in a tourism

destination as an ‘infection’ process in which knowledgeable individuals (in our case the

destination stakeholders) transfer their knowledge to the other members of the social group

with which they have contact. Configuration of the network and the nature of the stake-

holders would be expected to influence the efficiency of this process and thus, ultimately,

the destination’s ability to innovate and be competitive.

The destination network of Elba, Italy

The island of Elba, Italy, is part of the Tuscany Archipelago National Park and the

third Italian island. It is an important environmental resource owing to its geographic

position, temperate climate and the variety and beauty of its landscapes, coast and sea.

It is a sea, sport and culture destination, with almost 500,000 tourist arrivals, 3 million

overnights per year and several hundred accommodation establishments. Elba is con-

sidered a ‘mature’ tourism destination (Pechlaner, Tallinucci, Abfalter, & Rienzner,

2003; Tallinucci & Testa, 2006) with a long history and which has gone through a

number of different expansion and reorganization cycles. The great majority of the

stakeholders are small- and medium-sized companies (SMEs), mostly family run.

Several associations and consortia operate on the island in an attempt to overcome the

excessive ‘independence’ of SMEs by suggesting and developing different kinds of

collaboration programs.

The destination network was assembled in the following way. The core tourism com-

panies, organizations and associations operating at Elba are the vertices of a network

whose ties are the relationships among them. According to the local tourism board, the

list of companies comprises 1028 elements and the connections represent ‘business’

relations between organizations. They were collected by consulting publicly available

sources such as listings of the members of associations, members of management

boards, catalogs of travel agencies, marketing leaflets and brochures, and official corporate

records (to assess memberships of industrial groups). These data were then verified with

a series of in-depth interviews with ‘knowledgeable informants’ including the director

of the tourism board, directors of associations and tourism consultants. This triangulation

(Olsen, 2004) allowed the assessment of the validity of the collected linkages and revealed

others. With these additions, the network can be reasonably estimated to be almost 90%

complete.

Complex network analysis techniques were used to calculate the topological

characteristics of the system (for definitions and formulas, see, e.g. da Fontoura Costa

et al., 2007). The metrics were calculated by using available software packages (Pajek,

Ucinet) complemented by some Matlab programs developed by one of the authors.

Table 1 shows the values calculated for the whole network and for its main connected

component (i.e. disregarding isolated nodes). The degree distribution has a power-law

behavior P(k) � k2g, where g ¼ 2.32 + 0.269 (the scaling exponent is calculated

according to Clauset, Shalizi, & Newman, 2009).
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The analysis of the main topological characteristics of the Elba network can be

summarized as follows:

. the network shows a scale-free topology (power-law behavior of the degree distri-

bution) which is consistent with that generally ascribed to many artificial and

natural complex networks;
. the general connectivity is very low (link density) with a very large proportion of

disconnected elements;
. clustering is quite limited, as is the efficiency, both at a local and global level.

These results provide quantitative evidence in favor of recognizing that the ‘commu-

nity’ of Elban tourism operators is fragmented in nature. There appears little incentive to

group or cluster in a cooperative or collaborative manner as evidenced by considering the

clustering and assortativity characteristics. These conditions are also problematic for an

efficient flow of information and knowledge through the social system, and this may

affect its capabilities to innovate and be competitive in the future. These considerations

are in general agreement with previous studies performed by using more traditional

qualitative techniques (Pechlaner et al., 2003; Tallinucci & Testa, 2006).

Simulating knowledge flow in the Elba network

The Elba network can be used to perform a simulation of the transfer of information and

knowledge across the network. The objective here is to assess the present situation and

to test the capability of the destination in absorbing the knowledge transferred when

changing some of its structural parameters.

In our simulation, a simple SI epidemiological model is used. Despite its simplicity,

this class of models has been shown to be quite effective and to be a good approximation

of more refined and complex models (Barthélemy, Barrat, Pastor-Satorras, & Vespignani,

2005; Xu, Wu, & Chen, 2007). In addition, it is suitable for describing the knowledge

transfer process. In fact, we may well reasonably assume that once knowledge has

been transferred to a new host, it will retain the knowledge received; therefore, it will

remain ‘infected’. This is an essential pre-requisite to innovation as unless the knowledge

is transferred and used by enterprises at the destination, innovation will not occur.

Table 1. The main metrics calculated for the whole Elba network and its main connected component.

Metric Whole network Connected component

Number of nodes 1028 627
Number of edges 1642 1642
Density 0.003 0.008
Disconnected nodes 37% –
Diameter 8 8
Average path length 3.16 3.16
Clustering coefficient 0.050 0.08
Average degree 3.19 5.21
Average closeness 0.121 0.326
Average betweenness 0.001 0.003
Global efficiency 0.131 0.353
Local efficiency 0.062 0.102
Assortativity coefficient 20.164 + 0.022 20.175 + 0.024
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The algorithm used for the simulation is the following:

(1) the network is loaded;

(2) one randomly chosen stakeholder starts the spread by infecting a proportion pi of

its immediate neighbors. In tourism, this stakeholder is often a government-funded

tourist board or economic development agency;

(3) at each time step, the infected elements transfer the knowledge to a proportion pi of

their immediate neighbors;

(4) the process ends when all the network nodes have been infected.

As a parameter for the model, the capacity of the solitary stakeholders to transfer knowl-

edge is used. It can be expressed as a probability pi, whose value controls the number of

neighbors that are informed by a single stakeholder. This accounts for an important differ-

ence between information and knowledge flows and the spread of viruses. While viruses

tend to be indiscriminate, infecting any susceptible individual, knowledge is selective and

is passed by its host only to a limited set of the individuals with which it has relations

(Huberman & Adamic, 2004). Moreover, particular actors can have difficulties in acquiring

and retaining all the knowledge available to them (a feature usually called absorptive

capacity, see, e.g. Cohen & Levinthal, 1990; Priestley & Samaddar, 2007) due to their

internal functioning or because of the associated costs. In tourism, this issue of absorptive

capacity is critical, particularly given the dominance of SMEs in the sector.

We can assume that the capacity of transferring knowledge is different for the different

‘sizes’ of companies involved. Therefore, the network nodes have been divided into three

categories: large, medium and small. In our case, we have the following proportions: large

¼ 7%, medium ¼ 16% and small ¼ 77%. The values for the proportion of neighbors

informed used in the simulation runs are (arbitrarily) set as: plarge ¼ 1, pmedium ¼ 0.8

and psmall ¼ 0.6. Since the structural characteristics of the network, and particularly the

cohesion among stakeholders, can be a factor influencing the knowledge transfer

process, the experiment has also been performed with a modified version of the original

network (Levin & Cross, 2004; Reagans & McEvily, 2003). This has been obtained by

rewiring the connections while leaving unchanged the original connectivity (i.e. the

number of immediate neighbors of each stakeholder and overall density of linkages), in

order to obtain higher local efficiency and clustering coefficient. The algorithm used is

similar to the one proposed by Maslov and Sneppen (2002). For all the simulations,

only the main connected component of the network has been considered.

The new network has a clustering coefficient C ¼ 0.274 and mean local efficiency eloc ¼

0.334, as opposed to the original one whose values are C ¼ 0.084 and eloc ¼ 0.104 (Table 1,

connected component). It should be noticed that both values are lower than those reported by

the literature for social networks (Dorogovtsev & Mendes, 2002; Watts, 2004).

A synthetic network of the same size and order (same number of nodes and links) but

with a random distribution of links is used as a comparison in this case. The model has

been implemented with Netlogo (Wilensky, 1999) and is a derivation of some of the

distribution library models (Rumor Mill as modified by F. Stonedahl http://www.cs.

northwestern.edu/�fjs750/netlogo/hw4-forrest.html).

Given the conceptual and theoretical nature of the work presented in this paper, the

choice of all the parameters used in the model, although ‘reasonable’, is by some

means arbitrary. However, they are non-influential for the aims of the simulations, and

their choice was determined by trading off the statistical significance of the outcomes

and minimization of computational efforts.

The Service Industries Journal 9
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Results and discussion

The simulation results are shown in Figures 1 and 2. Figure 1 depicts the cumulative

number (as a percentage of total) of stakeholders that are ‘infected’ as function of time.

Figure 2 is the differential version, i.e. the number of informed actors at each time interval.

As can be seen, a random homogeneous network (Rnd) shows the slowest diffusion

process with respect to any other network whose connections have a structured non-

homogeneous distribution. This comparison with a ‘random’ network reinforces the

idea that the structure of the social network has a noticeable impact on the phenomenon

studied. The first series of simulations (EDiff versus EN) highlight a difference in

speed. It looks as if removing the differences in the capability of tourism stakeholders

to transfer knowledge to other members of the community can improve, in a visible

way, the whole diffusion process.

The ‘topology’ effect described above is much more evident in the second series of

simulations (RW). In this case, the model has been used by changing the structure of

the actual network. The runs are based on the rewired network having a much greater

clustering coefficient, i.e. a much greater degree of local cohesion among the tourism

stakeholders.

In conclusion, the simulations give us a clearly identifiable pattern. The knowledge

diffusion process is faster in the case of a structured network (e.g. the power-law

distributed Elba network) than in a random one. A much higher improvement is found

when considering the increase in clustering. Table 2 summarizes these differences by

showing the peak time of the diffusion process and the percentage differences.

We must therefore deduce that a very important determinant for the spread of

knowledge in a socio-economic system such as a tourism destination is the presence of

a structured topology in the network of relations that connect the different stakeholders.

Moreover, the existence of a well-identified degree of local cohesion strongly influences

this process. This supports the notion that destination stakeholders should be encouraged

to form clusters and to both compete and cooperate to raise the overall competitiveness of

Figure 1. Cumulative percentage of informed stakeholders for the simulations performed: rewired
network (RW), Elba network with equal probability of transmission (EN), with probabilities
scaled according to stakeholder size (EDiff) and a network of same size with a random distribution
of links (Rnd). Curves are averaged over 10 realizations of the simulations.
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the destination. Often the public sector intervenes to initiate such cooperative processes,

given the combative nature of SMEs. However, public sector support can facilitate a

network and provide ongoing support, but it is the destination stakeholders who must

operate the network.

These results are not completely new. The effect is the one identified by Granovetter

(1973, 1983) as the strength of weak ties and reconfirmed by the more recent works on the

so-called small world networks (Latora & Marchiori, 2001; Uzzi & Spiro, 2005; Watts &

Strogatz, 1998). Moreover, several authors have empirically found this behavior (Reagans

& McEvily, 2003; Sorenson, Rivkin, & Fleming, 2006). Here, for the first time, a tourism

destination is used as test case.

Concluding remarks

This paper has outlined a theoretical approach to analyzing the functioning of tourist

destinations. In doing so, it has demonstrated the benefits of importing analytical and

theoretical techniques of network analysis to tourism destinations. By coupling these

theoretical and analytical approaches with a thorough understanding of the destination

Figure 2. Differential curve of knowledge spreading for the simulations performed: rewired network
(RW), Elba network with equal probability of transmission (EN), with probabilities scaled according
to stakeholder size (EDiff) and a network of same size with a random distribution of links (Rnd).
Curves are averaged over 10 realizations of the simulations.

Table 2. Time of peak diffusion (Tpeak) and speed improvements in diffusion over different network
topologies (Rnd ¼ random network, EDiff ¼ differential actors capabilities, EN ¼ original Elba
network, RW ¼ rewired network).

Network Tpeak Speed improvement (%)

Rnd 6.1 –
EDiff 5.2 16
EN 4.8 22
RW 2.9 52
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and its stakeholders, we can diagnose the efficiency of the destination’s network structure

and its implications for competitiveness. We can also begin to utilize policy instruments to

intervene and to make the network more efficient. In other words, in a case such as Elba,

the simulations can be used to create development scenarios in which the efforts to move

toward strong forms of collaboration are increased, even if at a very ‘local’ level. This can

be highly beneficial not only for the stakeholders involved, but for the whole destination.

The approach conceptualizes destinations as networks of organizations and commu-

nities where the destination functions by the movement of resources, such as information

or investment, through the network. The benefits of conceptualizing destinations in this

way are clear. In a knowledge economy, destinations have to innovate to remain competi-

tive. The management of knowledge underpins this innovation and so, an understanding

of how knowledge can be managed across complex network organizations is fundamental

to this process. For tourism, as has been seen, a particular concern is the fact that most

destinations comprise SMEs, organizations which tend to be knowledge averse and

therefore public sector intervention is needed to establish cooperative frameworks and

networks at the destination level. In other words, the theoretical interest in understanding

the processes of knowledge transfer in a complex system such as a tourism destination is

crucial from the point of view of practitioners.

This implies a future research agenda focused upon network configuration and metrics

linked to the competitive performance of destinations. Comparative analysis of destination

networks would deliver an understanding of the most effective configurations of desti-

nations. Here, diagnostics can be used to improve connectivity by intervening to mend

broken links, or reconfiguring the network to be more efficient. This paper has shown

that this is possible by making an initial attempt in applying metrics to destinations.

The methods and the techniques used have shown that, once accepted, important

‘network’ framework results can be derived by studying a specific system. The basic

analytical tools allow an assessment of the peculiar characteristics of the structure and

functioning of a destination. Computerized numerical simulation models based on the

theories of a network can deliver differing development scenarios and show how the

system would evolve. It should be observed, however, that the quantitative tools and

methods used here are not fully sufficient to provide a full range of results. To move

the research agenda forward, knowledge of the specific destination under study combined

with qualitative assessments of the sector and local policy can greatly add to the toolbox

available to tourism scholars and practitioners, and in turn, better equip them in their effort

to understand the complex systems that are networked tourism destinations.
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Küppers, G., & Lenhard, J. (2005). Validation of simulation: Patterns in the social and natural

sciences. Journal of Artificial Societies and Social Simulation, 8(4). Retrieved March 15,
2006, from http://jasss.soc.surrey.ac.uk/8/4/3.html

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review
Letters, 87(19), 198701.

Law, A.M., & Kelton, W.D. (2000). Simulation modelling and analysis (3rd ed.). New York:
McGraw-Hill.

Leiper, N. (1990). Partial industrialisation of tourism systems. Annals of Tourism Research, 17(4),
600–605.

Levin, D., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in
effective knowledge transfer. Management Science, 50(11), 1477–1490.
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