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SYMPTOMS OF COMPLEXITY IN A TOURISM SYSTEM
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Tourism destinations behave as dynamic evolving complex systems, encompassing numerous fac-
tors and activities that are interdependent and whose relationships might be highly nonlinear. Tradi-
tional research in this field has looked after a linear approach: variables and relationships are
monitored in order to forecast future outcomes with simplified models and to derive implications
for management organizations. The limitations of this approach have become apparent in many
cases, and several authors claim for a new and different attitude. While complex systems ideas are
among the most promising interdisciplinary research themes emerged in the last few decades, very
little has been done so far in the field of tourism. This article presents a brief overview of the
complexity framework as a means to understand structures, characteristics, and relationships, and
explores the implications and contributions of the complexity literature on tourism systems. The
objective is to allow the reader to gain a deeper appreciation of this point of view.
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Introduction ators as well as governing bodies at different lev-
els (Hall, Williams, & Lew, 2004).

The task is not easy; tourism is difficult to mea-Tourism is one of the most important economic
activities in the world. The revenue generated has sure and analyze. The main reason resides in the

fact that it is an “industry” with no traditional pro-become a very important resource and a key factor
in the balance of payment for many countries and duction functions, no consistently measurable out-

puts, and no common structure or organizationregions and has been a major contributor to their
economic growth. As a natural consequence, it has across countries or even within the same country

(Organization of Economic Cooperation and De-become, in the last decades, a discipline studied
by a growing number of researchers, practitioners, velopment [OECD], 2000). Moreover, tourism ac-

tivities traverse a number of traditional economicexperts, and consultants. Their main objective is
to describe and to understand the composition and sectors and are generally not considered, as a whole,

in national accounts.the dynamics of the sector and, based on this
knowledge, to be able to foresee future behaviors The World Tourism Organization’s (WTO)

definition of tourism as comprising “the activitiesof the system’s components. This is the basis for
a great number of decisions, involving single oper- of persons traveling to and staying in places out-
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side their usual environment for not more than one portantly, are not able to return reasonable expla-
nations for a wide number of phenomena.consecutive year for leisure, business and other

purposes” (p. 12) looks fuzzy if examined with the In his seminal paper “More is different,” Phil
Anderson states,glasses of a scientist.

Too many different elements and interpreta-
tions fall into the terms contained in the official “The workings of our mind and bodies, and of all

the animate or inanimate matter of which wedefinition of tourism. The best proof is that all the
have any detailed knowledge, are assumed to beofficial bodies responsible for “measuring” this
controlled by the same set of fundamental laws,phenomenon face a real challenge when it comes
which except under certain extreme conditions

to identifying the “units” to be accounted for. we feel we know pretty well, but the ability to
Moreover, this definition poses a great challenge reduce everything to simple fundamental laws

does not imply the ability to start from those lawsto all those seeking to model the phenomenon in
and reconstruct the universe, and at each stageorder to foresee its behavior.
entirely new laws, concepts, and generalizationsThe forecasting methodology of tourism de-
are necessary, requiring inspiration and creativity

mand has created numerous proposals over the to just as great a degree as in the previous one.
past decades. Classical regressions, time series (1972, p. 393)
analysis, econometric models, qualitative methods,
and, more recently, neural network techniques have These ideas have contributed to set a new per-
been extensively explored and have generated in- spective in our view of natural phenomena, a new
numerable attempts (Song & Witt, 2000; Witt & view that today is known as “science of complex-
Witt, 2000). Nonetheless, the general accuracy of ity” (Waldrop, 1992). While complex systems ideas
these models cannot be regarded as excellent and are among the most promising interdisciplinary re-
the countless specific limitations put to them are a search themes to have emerged in the last few de-
good testimony of this. cades, not much has been done, so far, in the field

Failures in economic forecasting are common of tourism studies.
since Thomas Malthus predicted in 1798 that pop-
ulation growth would overtake food production re- Chaos, Complexity, and Tourism
sulting in mass starvation in Great Britain. For the
tourism sector this failure of forecasting may be Tourism has become an extremely dynamic sys-

tem. Economic globalization, fast changing cus-particularly serious, given its fundamental eco-
nomic importance for many regions across the tomer behavior, development of transportation and

information technologies, modifications in the formsworld. The great majority of the models have at
the basis the idea of a simplified, linearized ver- of organizations and labor, all strongly influence

the industry. In this scenario the intensified mar-sion of the tourism system and therefore they must
comprise a fair amount of limitations, boundaries, keting efforts of all tourism organizations have led

to a more effective approach: the destination man-and restrictions. This condition is common in a
number of disciplines such as physics, biology, agement approach (Ritchie & Crouch, 2003).

Many definitions have been proposed for theecology, medicine, sociology, and economics.
In recent years a new approach has emerged. notion of tourism destination (TD), all rather prob-

lematic for the many and diverse aspects that areMany scholars believe this approach is able to
overcome the difficulties of describing “complex” usually comprised in the concept (Framke, 2002).

Here we characterize a TD as a geographical loca-systems and to give better representations and bet-
ter tools to handle the issues involved. This ap- tion (city, region, resort, etc.), with a pattern of

attractions, facilities, and services, which touristsproach starts with the realization that the reduc-
tionist hypothesis born with the origin of “modern choose for a visit. In many places, a destination

management organization (DMO) is responsiblescience” is limiting too much of our ability to de-
scribe the real world. The methods devised by for coordinating the resources and the companies

operating at the location. The main typical respon-Galileo, Newton, Laplace, and many others can
only give us a very limited power and, more im- sibilities of a DMO are: policy enforcement, stra-
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tegic and operational planning, marketing, and ence on the development of a tourism destination
(Russell, 2006; Russell & Faulkner, 1999, 2004).product offering development (coordinating both

public and private assets). Some other researchers have followed this ap-
proach. McKercher (1999), for example, encour-From a structural point of view, a destination

can be seen as a system composed by a number ages the use of a chaos model for tourism. Tourism
operates in a nonlinear manner and the explana-(usually not too small) of elements that share some

kind of relationship. The system evolves by re- tion may come, according to the author, by taking
into account the complex interactions of the sys-sponding to external and internal inputs. It may

well be considered a complex adaptive system. A tem’s elements, combined with the influence of a
large set of external factors. The value of thetourism destination comprises a number of ele-

ments: the tourism operators, the support struc- chaos and complexity framework in understanding
the development of a destination and the role oftures, public and private organizations and associ-

ations. All of these elements have some kind of small tourism business networks has also been dis-
cussed by Tinsley and Lynch (2001).relationship among themselves and the possible

nonlinearities in these relationships are well known The main objective of this article is to give a
and have been described several times (Farrell & brief overview of the complexity framework and
Twining-Ward, 2004; Faulkner & Russell, 1997). to explore the implications and contributions that
Moreover, we can include in the system also ele- the study of complex systems can give to the un-
ments not traditionally thought as belonging derstanding of the tourism destination model. Con-
strictly to the tourism sector, but whose impor- tinuing the line of research presented above, this
tance and role in this framework is undoubtedly work aims at complementing and reinforcing it by
very high. providing some quantitative evidence in support

An important, although rather scarce, strand of of this approach. This, it is hoped, will allow the
literature has pointed out the necessity to change reader to gain a deeper appreciation of this point
attitude when studying tourism and tourism sys- of view.
tems. In a pioneering work, Faulkner and Valerio The remainder of the article is organized as fol-
(1995) start from the realization of the deficiencies lows. The next section gives an overview of the
and the unreliability of many demand prediction so-called “science of complexity” and the tools
and forecasting methods to call for the need of used to study a complex system; where possible,
alternative ways to explain tourism phenomena. examples from the tourism area of studies will be
They propose the adoption of a chaos and com- given. Section 3 discusses tourism destinations in
plexity framework. The reductionist paradigm this framework giving some quantitative evalua-
used in dividing a tourism system into separate tions of the symptoms of complex behaviors in
components, assuming that the relationships be- tourism systems. Section 4 discusses some impli-
tween them are stable and static, is challenged as cations of adopting the “complex system” ap-
unable to provide meaningful elucidations of many proach in considering a tourism destination. The
outcomes (Faulkner & Russell, 1997; Russell, 2005, last part contains some concluding remarks and in-
2006) dications for further research.

Examples of how the chaos and complexity
framework is able to provide meaningful explana- Complex Systems
tions of the dynamical behavior of a tourism sys-

Complexity is the study of the structures thattem can be traced in a number of subsequent
depend only in part on the nature of their constit-works. These discuss issues such as the dynamic
uents and whose global behaviors and characteris-and serendipitous development of destinations
tics cannot be deduced from the knowledge of(Faulkner, 2000, 2002; Russell & Faulkner, 1998),
their elementary building blocks. Complexity con-the effects of unexpected events such as crises and
cerns the unforeseen adaptive capacities and thenatural disasters (Faulkner & Russell, 2001;
emergence of new properties in systems that ariseFaulkner & Vikulov, 2001; Scott & Laws, 2005),

and the actions of entrepreneurs and their influ- as the quantity and the quality of the connections
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among individuals and organizations increase. The following a very limited number of simple rules
regarding local interaction, spacing, and velocitynotion of complexity has numerous meanings in

everyday speech. These are usually related to the (Reynolds, 1987).
size and the number of a system’s components. A special class of complex systems is the one
From a “technical” point of view, we do not have whose structure and components influence and are
universally accepted definitions, nor rigorous the- influenced by the external environment and in
oretical formalizations, of complexity. A rather in- which the interactions among the elements are of
tuitive depiction of a complex system may be a dynamic nature. In a complex adaptive system
given as, “a system for which it is difficult, if not (CAS), the parts “interact with each other accord-
impossible to reduce the number of parameters or ing to sets of rules that require them to examine
characterising variables without losing its essential and respond to each other’s behaviour in order to
global functional properties” (Pavard & Dugdale, improve their behaviour and thus the behaviour of
2000). the system they comprise” (Stacey, 1996, p. 10).

A system is considered complex if its parts in- Even in absence of a “formal theoretical defini-
teract in a nonlinear manner. Simple cause and ef- tion” it is possible to identify a number of charac-
fect relationships among the elements rarely exist teristics that may allow us to recognize a complex
and instead a very little stimulus may cause unpre- adaptive system (Cilliers, 1998; Stacey, 1996; Wal-
dictably large effects or no effect at all. This non- drop, 1992).
linearity of the interactions among the components These main features can be summarized as fol-
is a major originator of a series of properties that lows:
are frequently used to characterize the complex

• Nondeterminism. It is impossible to anticipatebehavior of a system. It must be noted that, despite
precisely the behavior of a CAS even knowingwhat happens with the natural language, there is a
the function of its elements. The dependence ofdifference between the concepts of complicated
the behavior from the initial conditions is ex-and complex. In comparison to a complex system,
tremely sensitive and appears to be extremelya complicated one is a collection of an often high
erratic; the only predictions that can be madenumber of elements whose collective action is the
are probabilistic.cumulative sum of the individual ones. It can be

• Presence of feedback cycles (positive or nega-decomposed in subelements and understood by an-
tive). The relationships among the elements be-alyzing each one of them. Any modern machine (a
come more important than their own specificcomputer, a car, an airplane, a satellite) comprises
characteristics and the feedback cycles can in-thousands, or even millions, of single pieces
fluence the overall behavior of the system.bound together. But, no matter how difficult it is,

• Distributed nature. Many properties and func-it is always possible to break up a complicated
tions cannot be precisely localized, in manysystem into separate entities and study them indi-
cases there are redundancies and overlaps; it isvidually, being sure that the final object will be
a distributed system.the (linear) composition of them (Ottino, 2004;

• Emergence and self-organization. A numberProcaccia, 1988).
of emergent properties are not directly accessi-On the contrary, a complex system can be un-
ble (identifiable or foreseeable) from an under-derstood only by considering it as a whole, almost
standing of the components. In a CAS, globalindependently by the number of parts composing
structures may emerge when certain parametersit. A “simple” object made of only two elements,
go beyond a critical threshold. In these cases,a double pendulum, a pendulum hanging from an-
generally, a new hierarchical level appears thatother pendulum, is well known to any physics stu-
reduces the complexity. The system evolves, in-dent for its totally unpredictable, chaotic behavior
creasing its complexity up to the next self-orga-(under the basic Newtonian laws of motion). A
nization process. One effect of such a character-“simple” school of fish, made up of a few dozen
istic is the capability to show a good degree ofmembers, is able to adapt its behavior to the exter-

nal conditions without apparent organization but robustness to external (or internal) shocks. The
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system is capable to absorb the shock and to Examples of complex adaptive systems include
many real-world ensembles: the patterns of birdsremain in a given state or regain the state unpre-

dictably fast. At the critical points of instability in flight or the interactions of various life forms in
an ecosystem; the behavior of consumers in a re-the system will reorganize through feedback

mechanisms. At a global level the system is ho- tail environment; people and groups in a commu-
nity; the economy; the stock market; the weather;mogeneous or symmetric; after a self-organiza-

tion process, however, symmetry is lost (breaks), earthquakes; traffic jams; the immune system;
river networks; zebra stripes; seashell patterns;one configuration dominates all others. From an

empirical point of view it is virtually impossible and many others. Complexity also applies well to
the world of economics. As Saari (1995) writes,to determinate why the system prefers one spe-

cific configuration instead of possible alterna- “even the simple models from introductory eco-
nomics can exhibit dynamical behaviour far moretives.

• Self-similarity. This implies that the system complex than anything found in classical physics
or biology” (p. 222). Many features of an econ-considered will look like itself on a different

scale, if magnified or made smaller in a suitable omy present difficulty for the “linear” mathemat-
ics usually employed.way. The self-similarity is evidence of possi-

ble internal complex dynamics of a system. A The tourism sector, as an economic activity,
shares many of these characteristics. A destinationCAS is at a critical state between a chaotic state

and a completely ordered one, a condition that comprises many different companies and organi-
zations. The relationships among them exhibit ahas been also called a self-organized criticality.

If parameters N and z describe a self-similar wide diversity and have been described in many dif-
ferent ways (Buhalis, 2000; Michael, 2003; Pav-system, they are related by a power-law rela-

tionship: N � zk. A power law means that there lovich, 2003; Pavlovich & Kearins, 2004; Smith,
1988), but, very often, they do not have any linearis no “normal” or “typical” event, and that there

is no qualitative difference between large and characteristic nor have they any static trait. The
reaction of the different stakeholders to inputs thatsmall fluctuations.

• Limited decomposability. It is quite impossi- may come from the external world or from what
happens inside the destination may be largely un-ble to study the properties of a dynamic struc-

ture by decomposing it into functionally stable predictable as the outcomes of their conducts.
Nonetheless, the system as a whole looks to fol-parts. Its permanent interaction with the envi-

ronment and its properties of self-organization low some general “laws.” Models such as the one
by Butler (1980), although discussed, criticized,allow it to functionally restructure itself; only a

“whole system” approach can explain CAS amended, and modified (Hall & Butler, 1995; La-
giewski, 2005; McKercher, 2005; Russell, 2005),characteristics and behaviors.
are generally considered able to give a meaningful

In short, following Cilliers (1998), it is possible
description of a tourism destination and, in many

to characterize a system as complex and adaptive
cases, have proved useful tools for managing their

by listing these main properties:
development. Obviously, these are only limited
considerations and the theoretical work in this• a large number of elements form the system;

• interactions among the elements are nonlinear field is still in its infancy. Just a handful of re-
searchers have started to consider the complexand usually have a somewhat short range;

• there are loops in the interactions; systems approach as a more effective framework
for the understanding of the many and different• complex systems are usually open and their state

is far from equilibrium; phenomena in this field (Farrell & Twining-Ward,
2004; Faulkner & Russell, 1997; McKercher,• complex systems have a history, the “future”

behavior depends on the past one; 1999). Much is still to be done, but the hopes are
those of being able to understand, for example,• each element is unaware of the behavior of the

system as a whole; it reacts only to information how crises, disasters, or turbulent changes may in-
fluence the sector, or why, after main crises, suchthat is available to it locally.
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as the 9/11 one, the tourism sector is able to show system at the beginning of the process, the out-
come is therefore unpredictable” (Heylighen, 2003,rapid and almost unexpected recoveries (Faulkner

& Russell, 2001; Prideaux, Laws, & Faulkner, p. 12). Not even the control parameter (by itself)
can be used to predict the system dynamics. None-2003; Scott & Laws, 2005; WTO, 2002).

McKercher’s (1999) model quoted above, for theless, it is possible to sketch a general depen-
dency of “global conditions” of a system on a con-example, looks very promising. It describes the

main components and the operation of complex trol parameter.
Starting from a completely ordered and stabletourism systems with the aim of providing a repre-

sentation of the elements that influence tourism on system, an increase in the control parameter will
evolve the system. The system passes through aa wide range of possible scales: national, regional,

local, and, possibly, single enterprises. In fact, periodic condition, then to a situation character-
ized by a complex behavior, then to a completelyeven if the number of actors influencing the sys-

tem changes at each level, the relationships be- chaotic state. This last state can be adequately de-
scribed with Wolf (1986):tween the different elements are similar. This way,

the author tends to provide a framework better
able to explain, for example, the failure of many In common usage chaos is taken to mean a state

in which chance prevails. To the nonlinear dy-well-designed, controlled, and sustainable tourism
namicist the word chaos has a more precise anddevelopment plans.
rather different meaning. A chaotic system is one
in which long-term [quantitative] prediction of

Complex Systems Evolution the system’s state is impossible because the om-
nipresent uncertainty in determining its initial

A CAS is a dynamical system. It is, therefore, state grows exponentially fast in time. (p. 273)
subject to some kind of evolution that may be
characterized by two variables: an order parameter Most of the real systems we know live at the
and a control parameter. The first one represents, boundary between complexity and chaos, a situa-
in some way, the internal structure of the system, tion frequently called edge of chaos, where a sys-
capturing its intrinsic order. The second one is an tem is in a condition of fragile equilibrium, on the
external variable that can be used to induce phase threshold of collapsing into a rapidly changing
transitions in a system. For example, let us con- state, which may set off a new dynamic phase
sider a certain volume of water close to the boiling (Waldrop, 1992). The type of behavior may de-
point. The order parameter is the density differ- pend on the initial state of the system and the val-
ence between the liquid and vapor phases; the ues of its parameters, the boundaries, are given by
temperature is the control parameter. By increas- the critical values of the parameter. In the critical
ing the temperature (providing energy, heat, to the regions, called attractors, the system is locally sta-
system) it is possible to bring the water to the boil- ble. Overcoming a critical state we find a cata-
ing point. At the critical temperature Tc = 100°C, strophic bifurcation, then, as the evolution contin-
the water starts boiling and the order parameter ues, the system moves towards a new attractor,
undergoes an abrupt change. It has the value zero waiting for the next perturbation able to create a
in the random state (above the transition tempera- bifurcation.
ture) and takes on a nonzero value in the ordered The history of a complex system is usually de-
state (below the transition). picted by drawing its movement in the phase space.

More generally, the variation of the order pa- This is a geometrical n-dimensional space, in
rameter can lead the system to a critical point (bi- which the coordinates are the variables of the sys-
furcation) beyond which several stable states may tem. A dynamical system, at least in theory, can
exist. The state will depend on small random fluc- be described by a number of differential equations
tuations that are amplified by positive feedback. It (equations of motion) comprising a number of
is impossible to determine or to control which variables. They are chosen in such a way that
state will be attained in a specific empirical sys- complete knowledge of all the variables deter-

mines the state of the system at one time in atem, “in practice, given the observable state of the



SYMPTOMS OF COMPLEXITY IN A TOURISM SYSTEM 7

unique way. The phase space is the set of all pos- ior (provided they exist) can be solved only in
very rare cases. The work of Poincaré on the threesible states of the system.

As time evolves, a point representing a system body problem, at the end of the 19th century, had
shown that even “simple” Newtonian systems in-state in the phase space describes a trajectory (or

orbit). The knowledge of this orbit implies the so- volving more than two bodies may exhibit very
complicated dynamics with almost unpredictablelution of the equations of motion. Stable orbits (at-

tractors) mean stable system behaviors. This ap- results arising from small variations of the initial
conditions.parent continuity in the possible evolution of a

system (from an orderly phase to a complex be- Since then, a number of mathematical tech-
niques have been developed to approximate thehavior to a chaotic unpredictable dynamics) has

led many to think of chaos and complexity phe- solutions of the differential equations used to de-
scribe such systems. Only the availability of mod-nomena as belonging to a “unified” discipline,
ern powerful computers, however, made it possi-

You are dealing with non-linear dynamical sys- ble to find “solutions” (which, in nearly all cases,
tems. In one case you may have a few things in- are obtained by numerical approximations). Much
teracting, producing tremendously divergent be- of the mathematics of chaos theory involves thehaviour. That’s what you’d call deterministic

repeated iteration of simple formulas, whichchaos. It looks random, but it’s not, because it’s
would be impractical to do otherwise.the result of equations you can specify, often

quite simple equations. In another case interac- Nonlinear dynamic systems are capable of ex-
tions in a dynamical system give you an emer- hibiting self-organization and chaos. This mecha-
gent global order, with a whole set of fascinating nism is called deterministic chaos, because theproperties. (Chris Langton, quoted in Lewin, 1999,

equations of motion that generate such erratic, andp. 12)
apparently unpredictable, behavior do not contain
any random terms. Deterministic chaos refers toIn other words: chaos theory essentially studies
the irregular (chaotic) motion generated by a sys-nonlinear effects on deterministic systems, while
tem whose evolution is governed by dynamic lawscomplexity theory studies definite patterns on non-
that uniquely determine the state of the system atdeterministic systems. The focus of chaos theory
all times from a knowledge of the system’s previ-is on the manner in which simple systems give
ous history. The source of irregularity is the expo-rise to complicated unpredictable behaviors, while
nential divergence of initially close trajectories incomplexity theory focuses on how systems con-
a bounded region of phase-space. This divergencesisting of many elements can lead to well-orga-
can be measured with the aid of the theory pro-nized and (almost) predictable behaviors.
posed by the 19th century Russian astronomer Alek-
sandr Mikhailovich Lyapunov (Kantz & Schreiber,The Analysis of Complex Systems
1997). In this sense, chaotic behavior can be re-

The toolbox of the complexity scientist has to- garded as very complex dynamics.
day become quite crammed. Several techniques This sensitivity to initial conditions is some-
have been developed to deal with the task of de- times popularly called the butterfly effect, suggest-
scribing a complex system. Many of them origi- ing the idea that chaotic weather patterns can be
nate from the work of 19th century scientists, but altered by a butterfly flapping its wings. A practi-
only modern computational facilities have made it cal implication is that it is essentially impossible
possible to solve them. Following Amaral and Ot- to formulate long-term predictions about the be-
tino (2004), we can group these tools in three main havior of a dynamic system: even if it would be
classes: nonlinear dynamics, statistical physics, possible to fix the initial conditions to a predeter-
and network theory. mined, finite accuracy, their errors would increase

at an exponential rate. Examples of systems exhib-Nonlinear Dynamics. A striking characteristic
of complex systems is the nonlinearity of the inter- iting nonlinear (chaotic) behavior are: the atmo-

sphere, the solar system, plate tectonics, turbulentactions among the components. The main conse-
quence is that the equations describing its behav- fluids, mixing of colored dyes, economies, stock
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markets, population growth, or the “simple” dou- be very effective in systems when the number of
degrees of freedom (and elements described by able pendulum (Gleick, 1987; Waldrop, 1992).
number of variables) is so large that an exact solu-

Statistical Physics. Statistical physics (or sta- tion is not practical or possible. Even in cases
tistical mechanics) is one of the fundamental fields where it is possible to use analytical approxima-
of physics. It uses statistical methods for address- tions, most current research utilizes the processing
ing physical problems. A wide variety of issues, power of modern computers to simulate numerical
with an inherently stochastic nature, is treated in solutions.
such a way. It provides a framework for relating One more important outcome of the use of sta-
the microscopic properties of individual atoms and tistical physics methods is the use of discrete mod-
molecules to the macroscopic ones of materials els. The fundamental assumption is that some phe-
observed in every day life. Thermodynamics, and nomena can be modeled in terms of computer
thermodynamic properties, can be explained as a programs (algorithms) rather than in terms of ana-
natural result of statistics and mechanics (classical lytical expressions. Cellular automata (Mitchell,
and quantum). The main result, and power, of this Hraber, & Crutchfield, 1993; Wolfram, 2002) are
approach is in the bypass of some classical me- an example of models developed for computer uti-
chanics problems, such as the impossibility of lization. Cellular automata are dynamic structures,
solving the three-body problem, by dealing with discrete in space and time. They operate on a uni-
systems composed by a large number of elements, form, regular lattice, characterized by “local” in-
reasoning in terms of statistical ensembles. More- teractions and are made up of many cells, each of
over, it introduced the idea of discrete models and which may be in one of a finite number of states.
agent-based models (Wolfram, 2002). A cell may change state only at fixed, regular in-

In recent years, our understanding of phase tervals, and only in accordance with fixed rules
transitions and critical phenomena has led to the that depend on their own values and the values of
development of two important new concepts: uni- neighbors within a certain distance. Applications
versality and scaling (Amaral & Ottino, 2004). exist in many fields of physical, chemical, biologi-
Many physical systems exhibit universal proper- cal, and social sciences; propagation of fire, preda-
ties that are independent of the specific form of tor–prey models, or the evolution of artificial orga-
the interactions among their constituents. This, for nizations can be represented with cellular automata
analogy, may suggest the hypothesis that universal (Mitchell et al., 1993; Wolfram, 2002).
laws or results may also show up in other types of
complex systems: social, economic, or biological. Network theory. Most complex systems can be

described as networks of interacting elements. InThe scaling hypothesis, born in the framework of
the study of critical phenomena, has provided the many cases these interactions lead to global be-

haviors that are not observable at the level of theidea that a set of relations, called scaling laws,
may help in relating the various critical point ex- single elements and that share the characteristics

of emergence typical of a complex system. More-ponents characterizing the singular behavior of an
order parameter and of response functions. The over, the collective properties of dynamic systems

composed of a large number of interconnectedpredictions of the scaling hypothesis are supported
by a wide range of experimental work, and also parts are strongly influenced by the topology of

the connecting network. The mathematical modelsby numerous calculations on model systems.
The concept of universality in statistical phys- of network structures have been developed in

graph theory. A graph is a generalization of theics and complex systems has the basic objective
of capturing the essence of different systems and concept of a set of dots (vertices, nodes), con-

nected by links (edges, arcs). These, depending onclassifying them into distinct classes. The univer-
sality of critical behavior pushes the investigations the specific situation, may or may not have a di-

rection (the graph is directed or undirected). In aon the features of the microscopic relationships
important for determining critical point exponents directed graph it is possible to track a route from

some vertex to another, but not in the oppositeand scaling functions. Statistical approaches can
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direction. Links may be associated with numeric (SW) networks described by Watts and Strogatz
(1998). They are characterized by large cluster-values (they may represent distances, costs, energ-

ies, information exchanges, etc.) called weights. In ing coefficients and short average path lengths.
Their degree distribution still follows a Poisson-the last few years, a number of researchers have

shed light on some topological aspects of many ian law.
• Scale-free networks: P(k) has a power-law dis-kinds of social and natural networks (the World

Wide Web, power grids, collaboration networks, tribution: P(k) � k−γ. The distribution is largely
uneven, there is no characteristic mean nodalnetworks of words, metabolic networks, and eco-

nomic agents). degree (the mean of a Poissonian ER distribu-
tion), but some (few) nodes act as very con-The first mathematical model, which has been

used for many years to describe several kinds of nected hubs, having a very large number of ties,
while the majority of nodes have a small num-networks, is due to Erdös and Rényi (1959, 1960).

Their model (the ER model) represents a network ber of links. Scale-free (SF) networks (Barabási
& Albert, 1999) are dynamic networks. Theyas a set of nodes connected, two at a time, with

probability p. The distribution of the nodes de- grow with the addition of new nodes and new
links following certain mechanisms; the mostgrees k (the number of connections per node) fol-

lows a Poisson law with a peak 〈k〉 (the average commonly cited is a preferential attachment in
which a new node has a higher probability todegree of the network):
attach to one of the most connected ones.

• Broad-scale networks: for which the degree
P(k) � 〈k〉k

k!
e

−〈k〉
distribution has a mixed behavior, a power law
regime followed by a sharp cutoff (exponential
or Gaussian decay) of the tail.The node degrees distribution P(k) and the aver-

age degree characterize the network and may be Both SF and SW networks, very common
used as a distinctive attribute. Other quantities structures among the real-world networks, show
commonly used to describe a graph are: the clus- peculiar characteristics such as (Newman, 2003a):
tering coefficient C, which measures how close

• robustness: stability of the system to randomthe neighborhood of each node is to a complete
removal (or failure) of randomly chosen ele-subgraph (part of the graph in which every node
ments;is connected to all the others, also called clique)

• fragility: high sensitivity to targeted attacks toand the average length L of a path between any
the most connected hubs;two vertices.

• low internal friction: extent and speed of dis-More recently, a number of investigations
ease (viruses, but also messages, fads, beliefs,started with the works of Watts and Strogatz
etc.) transmission are greatly improved with re-(1998) and Barabási and Albert (1999) have pro-
spect to a random ER network, in some cases itvided evidence that, in many cases, real-world net-
is shown that there are no critical thresholds atworks are quite different from ER graphs. Follow-
all for these phenomena.ing these, many other works have been published

(Albert & Barabási, 2002; Boccaletti, Latora, We may expect that the topology of the tourism
Moreno, Chavez, & Hwang, 2006; Dorogovtsev & actors network, like many other social and eco-
Mendes, 2002; Newman, 2003b; Watts, 2004). nomic networks, exhibits structures like the ones

The distribution P(k) of the nodes degrees can discussed above.
be used to classify the networks into three broad
classes (Amaral, Scala, Barthélémy, & Stanley, Tourism Destinations as Complex Systems:
2000): The Symptoms

A tourism destination is a complex agglomera-• Single-scale networks: in which P(k) exhibits
exponential or Gaussian tails. This class con- tion of diverse systems of interrelated economic,

social, and environmental phenomena and net-tains the random ER graphs and the small world
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works. As mentioned in the introduction, some au- observed in the transition to the market by the
countries formerly subjected to the authority of thethors have proposed this interpretation as more ef-

fective in providing insights in the structure and Soviet regime (Recanatini & Ryterman, 2001).
After the disruption of the USSR, a number ofthe dynamical evolution of the system. The objec-

tive of this section is to provide, besides what is business associations emerged to mitigate the ini-
tial output decline. Following the ideas of com-already qualitatively discussed in the literature,

some quantitative evidence for these ideas. The plexity theories, this process can be interpreted as
a rational response to coordinate activities in amost distinctive characteristics of a complex adap-

tive system will be discussed: self-organization newly decentralized economy to face the initial
“disorganization.”and self-similarity, robustness and resilience, and

edge of chaos behaviors. This self-organization of a tourism destina-
tion’s stakeholders gives a different foundation to
the initial stages of the Butler’s (1980) life cycleSelf-Organization and Self-Similarity
model. According to this, in the first phases, as

In economic and social contests, self-organiza- soon as the tourism phenomenon gains some mo-
tion is seen through the spontaneous formation of mentum, we witness the involvement of the local
structures such as associations, consortia, etc., that community, the buildup of facilities and infra-
group stakeholders in order to better cope with the structures, and the creation of tourism associa-
environment, namely to share experiences, re- tions. This behavior is quite typical of a complex
sources, and to support one another in facing pos- system. Studies (Helbing & Vicsek, 1999) have
sible adversities. The basic idea is that open sys- confirmed that, even in presence of repulsive ex-
tems will reorganize at critical points of instability changes, a system tends to minimize the rate and
almost independently from external “reordering” the intensity of interactions giving rise to the spon-
actions. taneous formation of agglomerations. In other

Modern tourism starts in the second half of the words, as individual entities are trying to maxi-
19th century and its development is strongly influ- mize their own success, these systems tend to
enced by two factors: the availability of free time reach a state with the highest global success,
and the development of faster and cheaper trans- which is not trivial at all. If a system self-organ-
portation means. In few years the phenomenon as- izes at all, it is also (more or less) symmetric and,
sumes an important dimension. As soon as the hence, behaves (almost) optimally.
mass of tourists and travelers starts to be signifi- From a more quantitative point of view, self-
cant, the system of tourism operators, in some organizing systems are characterized by self-simi-
cases involving travelers and tourists as well, be- larity and fractal geometries, in which similar pat-
gins to form associations or consortia. All the terns are repeated with different sizes or time
modern developed tourism destinations have seen scales without changing their essential nature. A
this process. In Italy, for example, the last decade power law relationship in some statistical parame-
of the 19th century saw the birth of the local tour- ter is one of the common signatures of a nonlinear
ism promotion associations, the pro-loco, immedi- dynamic process, which is, at a point, self-orga-
ately followed by the foundation of the Touring nized (Komulainen, 2004). Zipf’s law and Pareto
Club Italiano (1894), the Societá Italiana degli law, for example, are well-known principles, both
Albergatori (hotel association, 1894), the Automo- exhibiting a power-law behavior and are com-
bile Club Italiano (1898), the Associazione Nazio- monly considered to be telltale signs of self-orga-
nale per il Movimento dei Forestieri (association nization.
for the movement of foreigners, 1900). The pro- Ulubaşoǧlu and Hazari (2004) have shown the
cess continues with the setup of the Ente Nazio- presence of Zipf-like relationships in tourism sys-
nale per l’Incremento delle Industrie Turistiche tems. In their work, the authors analyze the in-
(1919), which later became the Italian National ternational tourist arrivals and find the familiar
Tourist Board (Paloscia, 1994). nonlinear rank-size distribution. With the same

technique the data for tourist arrivals to ItalianMore recently, the same phenomenon has been
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provinces have been analyzed (Istituto Nazionale a change but retaining essentially the same func-
di Statistica [ISTAT], 2005). The results are given tions, structure, and characteristics. In a complex
in Figure 1. The comparison of the two sets of system, resilience is thus related to the magnitude
data shows a remarkable similarity (apart from the of a shock that the system can absorb while re-
obvious difference in scale). maining within a given state, or the degree to

which the system is capable of self-organization.
Robustness and Resilience This is related to the extent to which reorganiza-

tion is endogenous rather than forced by externalThe autonomous reorganization capabilities of
drivers. Resilience stems from both the internala complex system, exercised to react to external
structure of the system and the stimulus of privateimpulses that may disrupt it, reveal themselves as
or public policy decisions (Mileti, 1999).resilience. The concept, borrowed from the materi-

The dynamics of a system can be representedals engineering field, has been applied by Holling
by measuring some outcome at regular intervals.(1973) in studying ecosystems. In this context, re-
In a tourism destination, the measurements of thesilience represents the ability of a system to absorb

disturbance and to reorganize while going through days spent by tourists can be taken as a meaning-

Figure 1. The Zipf-like distributions of tourist arrivals for world countries (A) (Ulubaşog̨lu & Hazari, 2004) and
Italian provinces (B) (ISTAT, 2005). Apart from the obvious scale difference, the overall behavior is remarkably
similar.
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ful representation of the system. They may be seen The main idea behind these tests is that, after
having allowed for a weak trend, the time seriesas the result of the interactions among many of the

system’s components: the demand side (tourists), is checked against the hypothesis of modifications
or breaks in the trend (or in the level) that canthe supply side (infrastructures available to visi-

tors), plus a number of internal and external eco- shock the system, preventing it from returning to
the previous behavior and permanently moving itnomic factors (see, e.g., Ferro Luzzi & Flückiger,

2003). away from its past track. Several examples of
these kinds of studies can be found in the litera-An important concept in the analysis of a time

series is the one of stationarity. From a statistical ture. Aly and Strazicich (2002) use the LS test to
examine the annual tourist night visits to Egyptpoint of view its importance is due to the fact that

many models used to study a time series and to and Israel. They conclude that, in spite of shocks
from terrorism, war, and regional instability, visitsforecast future behaviors are valid only in the

presence of this characteristic (Chatfield, 1996). In by tourists remains a trend-reverting series. Nara-
yan (2005) applies a modified ZA test proposedour case we may extend this concept and give a

physical interpretation. Stationarity can measure by Sen (2003) and shows that visitor arrivals in
Fiji from Australia, New Zealand, and the US arethe capability of a system to continue its evolution

absorbing possible external (or internal) shocks. trend-reverting at the 10% level or better, imply-
ing that shocks (due to internal political instabilit-This can be true for the whole series or for the

parts that satisfy this requirement. In other words, ies) to visitor arrivals have only a transitory effect.
Time series such as those shown in Figure 2if a tourism system, in its measurable expression,

exhibits a consistent stationarity, at least for a rea- (overnights for Italy and Elba Island, a renown
Italian tourism destination), like many others wesonably long period of time, it means that, in that

period of time, the system is able to recover distur- could draw for a tourism destination, are intrinsi-
cally not stationary, thus implying a dynamicalbances in a relatively fast way. Possible deviations

from this behavior will be seen as structural breaks evolution of the system. Removing the main trend
and correcting seasonality effects, it is possible toin the time series, with a sensible change in the

series trend and/or level. In this case, we may con- assume that we are left with a quantity that repre-
sents the internal dynamics of the system’s com-clude that the resilience of the system was not

enough to react to shocks of the magnitude experi- ponents. By applying the tests mentioned above it
is possible to analyze the response of the system.enced.

Different techniques can be used to measure Table 1 shows the results for the two series.
The results clearly suggest the rejection of thethis kind of effect. Structural time series modeling

(Harvey, 1989), for example, is used by Eugenio- hypothesis of unit roots in the time series, thus
confirming the basic stationarity of the systems’Martin, Sinclair, and Yeoman (2005) to show that
behaviors. The only conflicting result is the ADFsome part of the tourism demand in Scotland has
test for Elba, but this test is known in literaturebeen hardly affected by international crises. More
as performing poorly in the presence of possiblethan that, a number of proposals have been made
structural breaks such as the ones that can be seento determine whether a time series can be consid-
in the Elba series (Lee & Strazicich, 2003; Phillipsered exhibiting substantial stationarity. This set of
& Perron, 1988; Zivot & Andrews, 1992). Thesestatistical tests comprises the well-known Dickey-
results can therefore be interpreted as indicationFuller test (Dickey & Fuller, 1979), both in the
of a substantial resilience of the tourism systemssimple (DF) and the augmented (ADF) version,
analyzed. Moreover, a system (Italy) and one ofand the variations proposed by Phillips and Perron
its subsystems (Elba) exhibit the same behavior;(1988) (PP test) and by Zivot and Andrews (1992)
an evident symptom of self-similarity.(ZA test), and the more recent test by Lee and

Strazicich (2003) (LS test) based on Lagrange
On the Edge of Chaosmultipliers. Metes (2005) provides a good descrip-

tion of the tests and a comparison of their applica- A tourism destination is an evolving, growing
system. Since the proposal by Butler (1980) a fairbility, limitations, and power.
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Figure 2. Tourist overnights time series for the period 1954–2004: Italy and Elba island. Sources: Italian Statistics Bureau,
ISTAT, and Elba Tourist Board.

amount of studies have given confirmations and gogine & Nicolis, 1977). They evolve in unstable
examples of his model describing the life cycle of environments; the more ordered and complex a
such systems (Butler, 2005a, 2005b). To preserve system becomes, the more entropy it must dissi-
its existence, a CAS must interact with the envi- pate to maintain its existence. Each system has an
ronment, continually maintaining a flow of energy upper limit on the amount of entropy that can be
into and out of the system. Open systems that dissipated. When the flux from the environment
evolve and grow by absorbing energy and matter increases beyond that limit, the system goes into a
from the external world and dissipating the result- chaotic state. At a critical point, the system faces
ing entropy, are called dissipative structures (Pri- a bifurcation: it can break down, ceasing to exist

as an organized system, or it can undergo a spon-
taneous reordering (a self-organization). In a dissi-Table 1
pative system, disequilibrium is a necessary condi-Stationarity Tests Results for Italy and Elba Overnights
tion for growth (Prigogine & Nicolis, 1977). OnTime Series: 1954–2004

the other hand, managing a system typically aims
Test

at stabilizing it trying to avoid abrupt changes. An
Destination ADF PP ZA LS organization is therefore “oscillating” between a

stable ordered state and a chaotic one; this com-
Italy −3.168** −3.195** −3.529** −9.462***

plex state has been also called the edge of chaosElba −1.287 −3.652*** −4.779*** −5.565*

(although the usage of this term is questioned by
*10% significance in the rejection of the unit root hypothesis.

some) (e.g., Mitchell et al., 1993).**5% significance in the rejection of the unit root hypothesis.
***1% significance in the rejection of the unit root hypothesis. It is possible to visualize this state by using a



14 BAGGIO

phase space plot, in which the behavior of the sys- diverge according to: δX(t) � eλtδX0. The rate of
separation can be different for different orienta-tem is rendered through the drawing of the param-

eters that characterize the system itself. A time se- tions of the initial separation vector. Thus, there
exists a whole spectrum of Lyapunov exponents.ries can be used to derive such a plot. Before doing

that, we must recreate the phase space by using Their number is equal to the number of dimen-
sions of the phase space. The largest LCE deter-one of the techniques devised for this purpose.

The most commonly used is the time-lagged (de- mines the general behavior of the system. If it is
negative, the system follows a stable trajectory; iflay-coordinate) technique (Kantz & Schreiber,

1997; Schreiber, 1999). A delay coordinate recon- it is null, the system is in a steady state; if it is
positive the system exhibits unstable and chaoticstruction can be obtained by plotting the time se-

ries versus a time-delayed version of it. For a two- behavior (Sprott, 2003). In most cases, the calcula-
tion of Lyapunov exponents cannot be carried outdimensional reconstruction, it is possible to plot

the delay vector yn = (tn, tn−V), where V is the lag or analytically and numerical techniques must be
used. In cases like ours, when only a one-dimen-sampling delay: the difference between the adja-

cent components of the delay vector measured in sional time series is given, the highest LCE can be
number of samples. The theoretical basis for this estimated with the method proposed by Wolf,
procedure is due to Takens (1980). His fundamen- Swift, Swinney, and Vastano (1985) and Ro-
tal theorem states that a dynamical system can be senstein, Collins, and De Luca (1993).
reconstructed from a sequence of observations of The result for Elba time series is: LCE =
the state of the dynamical system and, in the gen- 0.0192 (embedded with delay = 3 and dimension =
eral case, the dynamics of the system recovered 4). Being positive, we may assume that the series
by “time-lagging” the series is the same as the dy- represents a chaotic system. Nonetheless, the value
namics of the original system. is quite small. As a comparison a logistic map has

As an example, the time series of quarterly LCE = 0.69 and a Lorenz attractor has LCE = 0.91
tourist overnights at Elba Island for the period (Sprott, 2003). It is therefore possible to conclude
1954–2005 has been considered. The series has that the chaoticity level of our tourism system is
been logarithmically transformed and “traditional” present but not very high.
corrections for trend and seasonality have been ap-
plied. This way we may suppose that the pattern Implications for the Management
left is mainly (if not fully) dependent on the inter- of a Tourism Destination
nal dynamics of the system. The resulting series is

Far from being definite proofs, the results andthen embedded (with delay = 3) and the resulting
the considerations presented so far have given evi-phase space plot is shown in Figure 3.
dence (both measurable and qualitative) for theThe diagram indicates that the series cycles
presence of a number of characteristics that areregularly, but not fully predictably, staying within
typical symptoms of the complexity of a system.a bounded region of the phase space. This is typi-
This approach to a tourism destination has its maincal of chaotic systems such as the weather or fi-
outcome in explaining, at a conceptual level, anancial markets. The limits of the behavioral range
great part of the variability in the behavior of theseshown in the phase space diagram are said to at-
systems. In dealing with such a system, the “man-tract the behavior of the system, and, due to its
ager” may better understand the reasons of a lim-characteristics, it is called a strange attractor. The
ited, and sometimes inexistent, capacity of accu-same basic techniques used here allow deriving
rate prediction of future evolution that affectsalso a quantitative measurement of chaoticity.
greatly the ability to manage and control it.This is given by the Lyapunov characteristic expo-

First of all, the techniques presented here cannent (LCE).
be used to assess the complexity and chaotic char-The LCE of a dynamical system is a quantity
acteristics of a destination. Once evaluated, thesethat characterizes the rate of separation of infini-
can provide important indications for a destinationtesimally close trajectories in phase space. Quanti-

tatively, two trajectories with initial separation δX0 management organization. A significant issue, the
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Figure 3. Phase space plot of quarterly tourist overnights for the period 1954–2004,
Elba Island. Source: Elba Tourist Board.

basis for most of the activities aiming at defining can produce sudden shifts in behavior, or at least
establish a probability distribution for their occur-policies and plans for the development of a tour-

ism destination, is the capability of forecasting, rence (Hansell, Craine, & Byers, 1997). Simula-
tion methods prove the feasibility of this approachwith the best possible approximation, its future be-

havior and outcomes in terms of tourists’ fluxes (Smith & Johnson, 2004) and help in better captur-
ing the complex behaviors of many systems com-and receipts. One of the most important character-

istics of a complex system, as stated above, is its posed of human organizations (Berry, Kiel, & El-
liot, 2002).unpredictability, at least with the linear techniques

we are used to. In recent years quite a number of these simula-
tions have been used to describe different types ofNonetheless, it is still possible to manage and

understand complex systems, at least on some lev- systems. Agent-based modeling (ABM) has proved
its capabilities in a wide range of areas and hasels. Large-scale behaviors at system level might

still be foreseeable if it is possible to describe the been proposed successfully for applications both
in economic (Tesfatsion & Judd, 2006) and socialoverall dynamics of the system including the pres-

ence of any attractors and their basins (the regions sciences (Bonabeau, 2002; Macy & Willer, 2002).
In ABM, a system is represented by a collectionof phase space in which they act). This can be

accomplished by using a number of approaches of autonomous decision making units called agents.
Each one independently estimates its condition andbased on simulation models and nonlinear time se-

ries analysis. Once the attractors of a complex sys- decides on the basis of a given set of rules. Agents
may perform different tasks, depending on the sys-tem have been identified, it can be possible to de-

termine whether changes in a control parameter tem they represent. Repetitive interactions between
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Rather than trying to consolidate stable equilib-agents produce different configurations of the sys-
rium, the organisation should aim to position it-tem’s state. Essential to the method is the exten-
self in a region of bounded instability, to seek the

sive usage of computational capabilities. Agent edge of chaos. The organisation should welcome
based models are especially appropriate when ag- disorder as a partner, use instability positively. In

this way new possible futures for the organisationgregate behavior depends on structures of rela-
will emerge, arising out of the (controlled) fer-tions, so that no single representative element can
ment of ideas which it should try to provoke. In-fully describe the system under study. stead of a perfectly planned corporate death, the

The technique has been used as effective deci- released creativity leads to an organisation which
sion-making support for planning urban transpor- continuously reinvents itself. Members of an or-

ganisation in equilibrium with its environmenttation and for analyzing disease spread scenarios
are locked into stable work patterns and attitudes;(Toroczkai & Eubank, 2005) or in studying travel
far from equilibrium, behaviour can be changed

demand patterns (Zhang & Levinson, 2004). More more easily. (Rosenhead, 1998)
importantly, ABM has been effectively employed
as a tool for providing the bases for the analysis

For a tourism destination, as well as for other
and the development of policies in complex and

types of organizations, it is possible to state (Sta-
uncertain socioeconomic systems (Bankes, 1993,

cey, 1993, 1996) that the systems do not only
2002). Tourism has seen only a very few attempts

adapt to their environments, but help to create
at using these techniques in simulating the behav-

them and their success can come from contradic-
ior of a tourism destination (Walker, Greiner, tion as well as consistency. We have seen that
McDonald, & Lyne, 1998) or in supporting strate- long-term planning is almost impossible; there-
gic management decisions (Buchta & Dolnicar, fore, it is possible to conclude that success may
2003). The discussion and the evidence provided stem from being part of a self-adapting process,
above may be seen as a foundation to this way of rather than form an explicit “vision” and revolu-
reasoning, but definitely more work is needed tionary as well as incremental changes may be the
from both a theoretical and a practical point of basis to build organizational success. Managing a
view. complex system requires, therefore, an adaptive

It is possible to summarize what has been pre- attitude, more than a rigid deterministic, authori-
sented so far by saying that, once established what tarian style.
kind and what level of complexity a destination The proposal of using adaptive management to
has, simulation methods can be used to provide deal with a system derives from the work of
medium or (relatively) long-term evolution scenar- 1970s’ ecologists (Holling, 1978). It calls for an
ios. The more traditional (linear) forecasting meth- experimental path to management. The method
ods, with their limited validity, can give useful builds on the idea of exploring alternative possi-
short-term predictions, as they have up to now. bilities, implementing one or more of them, moni-
Their usefulness will mainly reside in contributing toring the outcomes, testing the predictions, and
to the identification of main evolutionary paths learning which one most effectively allows to
and, especially, in applying small “corrections” to meet the management objectives. The cycle then
the system behavior to try to steer it clear from closes by using the results of the actions to im-
undesired regimes. prove knowledge and adjust subsequent manage-

One more implication of the complexity ap- ment activities.
proach is the understanding that all the attempts to Since then, it has been adopted in different situ-
maintain stability may only work for a short pe- ations, including tourism systems, with encourag-
riod of time. Seeking stable equilibrium relation- ing results (Farrell & Twining-Ward, 2004). For
ships is considered to be detrimental for the devel- example, Agostinho and Teixeira de Castro (2003)
opment of the system, because evolution and analyze a Brazilian experience and provide tangi-
growth can only be possible in regions of the ble data showing that an adaptive, self-organizing,
phase space at the boundary between order and management system produce better performance

with respect to more traditional schemes and Reedchaos:
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(1999) reports on the achievements obtained in young and evolving discipline, it has not been
able, yet, to produce universally accepted frame ofcollaborative planning of a Canadian destination.

Even if the difficulties and the risks of this ap- reference and methods. The hope is that in a near
future, some advancement may give better toolsproach have been well highlighted (e.g., Caffyn

& Jobbins, 2003), it looks to be one of the only and conceptual constructions. Work is under way
to meet this objective.reasonable alternative to successfully steer a con-

temporary tourism destination in achieving its
goals and objectives. Acknowledgments
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