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Abstract 
The study of network representations of physical, biological, and social phenomena has 
developed rapidly in recent years. This paper presents a review of important results and 
methods of the science of networks with an application to the field of socio-economic 
systems. The basic definitions and computational techniques are described and the effects of a 
network’s topology on its dynamic properties are examined and illustrated using a tourism 
destination as a case study (Elba, Italy). A static structural characterization of the network 
formed by destination stakeholders is followed by a dynamic analysis of the information 
diffusion process. The outcomes and the implications of this analysis for improving 
destination management are discussed.  
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Introduction 

Connections and relationships are among the most important elements characterizing the 
shape and the behavior of the physical and the social world as we understand it. Most parts of 
the natural and the social sciences are, in essence, founded on the study of relationships. As a 
result a ‘science of networks’ is receiving increased attention from a growing number of 
scholars interested in researching the structural and dynamic properties of networks. A large 
part of the systems we examine, from biological cells to organizational communication 
interactions to linguistic texts, can be conceptualized as sets of ‘objects’ connected by links: a 
network.  

A review of the literature of network research shows that the structure (topology) of a network 
is a measurable and, at least to some extent, predictable property that greatly affects its overall 
dynamic behavior and which can be used to explain a wide number of processes. These 
include the spread of viruses over a computer network or of diseases in a population, the 
formation of opinions, the diffusion of information or knowledge and robustness to external 
shocks. These processes all exhibit a strong dependence on the basic topological features of 
the network representing the system under study. Network analysis techniques can also 
provide diagnostic tools for cataloguing and analyzing the patterns of relationships in 
networks such as groups of people or organizations (Caldarelli, 2007). This has led to the 
birth of a new discipline, which many authors have started to call network science. Network 
science is the study of network representations of physical, biological, and social phenomena 
with the objective of devising predictive models (Watts, 2004). The main questions asked in 
network science concern the topological measures used to characterize the properties of a 
network and how these properties affect the behavior or evolution of the systems under study 
and the processes occurring on them. Answers to these questions, beside their obvious 
theoretical interest, can have a wide ‘practical’ impact on our ability to engineer and control a 
complex system, from improving Web searches for tourism products and Internet routing to 
evaluating the risks of ecological damage as a result of human actions through tourism. 

With its origins credited to the famous paper by Leonhard Euler (dated 1736) on the 
Königsberg bridges’ problem, the ideas at the heart of the modern science of networks are 
over 250 years old. However, they did not find a wider audience until the mid 1990s when the 
availability and accessibility of data and the availability of powerful computation tools 
allowed scientists to develop effective models, theories and simulations of the static and 
dynamic properties of networks. The topology of complex systems, represented as networks, 
has been shown to be a fundamental feature of many systems (Boccaletti et al., 2006). The 
contribution of scientists from many different disciplines has revealed how behaviors and 
processes can be described and explained by taking into account the system’s general 
connectivity properties. 

Tourism is no exception here. There is a significant literature on the importance of the 
relationships between tourists and service organizations and between tourism companies 
themselves. (Lazzeretti & Petrillo, 2006; Morrison et al., 2004; Pavlovich, 2003; Stokowski, 
1992; Tinsley & Lynch, 2001). The main focus is on tourism destinations, thought to be an 
essential unit of analysis for the understanding of the whole tourism system (Buhalis, 2000; 
Framke, 2002; Georgulas, 1970; Ritchie & Crouch, 2003; Vanhove, 2005). However, only a 
few works are available which examine a tourism destination from a network point of view. 
Of those only a few use the available quantitative methods of network science (Baggio, 2008; 
Pforr, 2006; Scott, Cooper, & Baggio, 2008; Shih, 2006). In this field, quantitative network 
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tools can provide a novel view of the destination system and give managers the potential to 
improve functions such as the flow of information or the governance of destinations. 

The aim of this paper is to review the quantitative methods of analysis of complex networks 
with an application to the tourism field. The paper is specifically focused on understanding 
the tourism destination which can be represented as a network by enumerating the 
stakeholders composing it and the linkages that connect them.  

The remainder of this paper is organized as follows. After a brief presentation of the concept 
of tourism destination, and an historical account of network studies in the wider literature, the 
reader can find an outline of the general theoretical framework in which the modern science 
of networks is embedded. The main models and metrics for a static and a dynamic analysis of 
a complex network are then discussed along with guidance on interpreting the metrics 
described in the framework of a socio-economic system such as tourism. 

Where possible, examples from the tourism field are given. Examples will also be provided 
from other fields, with the additional benefit of emphasizing the ‘universal applicability’ of 
network analysis methods. The methods and results presented here have also the objective of 
contributing, from an interdisciplinary viewpoint, to the methodological foundation of tourism 
(Tribe, 1997). 

Tourism destinations 

A tourism destination, as defined by the UN World Tourism Organization (UNWTO, 2002) 
is: 

“A physical space in which a visitor spends at least one overnight. It includes tourism 
products such as support services and attractions, and tourism resources within one day's 
return travel time. It has physical and administrative boundaries defining its management, 
and images and perceptions defining its market competitiveness. Local destinations 
incorporate various stakeholders often including a host community, and can nest and 
network to form larger destinations”.  

From a more general point of view, this constellation of specialized companies, organizations 
and communities gathered into a confined geographical location (even if its boundaries are 
often poorly defined) can be seen as a form of industrial cluster or district. Thus the analysis 
of its structure may draw upon the theory of industrial clusters, of their formation mechanisms 
and their evolution (Hjalager, 1999).  

The main models of clusters and networks of companies or organizations have been 
developed by investigating industrial sectors, with limited attention to the service sectors of 
the economy such as tourism. Tourism destinations, however, deal with different offerings 
and have peculiar differences with respect to a ‘traditional’ district. The formation 
mechanisms, the focus on the service components, the characteristics of the ‘products’ and the 
relationship between them and the ‘production’ system are some of the peculiarities which 
make a tourism destination different from an industrial cluster. First of all, tourism is 
essentially a service industry in which the ‘product’ (i.e. a package sold by a tourism agency) 
is not really well defined and is composed of many different elements (Johns, 1999; Sinclair 
& Stabler, 1997; Wahab & Cooper, 2001). The tourist usually purchases this package in 
advance and consumes it at the destination. The diversity of elements which form the package 
causes the establishment of a wide layer of intermediaries which are an integral component of 
the same industry (Gollub et al., 2003). Therefore, the models of industrial networks and 
clusters need modification and adaptation when tourism is the main object of study (Gnoth, 
2002, 2006). 
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Concentration effects in general economic or industrial activities have been studied and 
measured in detail. Theoretical and empirical research has found that agglomeration effects 
generally play a crucial role for regional income levels (Brenner & Weigelt, 2001; Krugman, 
1991), for the attractiveness toward foreign investments (Barrell & Pain, 1999) and for the 
competitiveness of the area in which they occur (Norton, 1992). Moreover, economic growth 
and geographic agglomeration have been found to be self-reinforcing (Martin & Ottaviano, 
2001); concentration of industries increases with economic growth and, by reducing the cost 
of innovation in the region where the economic activities converge, it enhances growth.  

An idea at the basis of most literature on industry clustering is that firms sited in a 
geographical area share common ideals, rules and languages so that the social environment 
they form is homogeneous. Social, cultural and operational contiguity favors the spread of 
tacit information and knowledge among local actors. This constitutes a competitive advantage 
for the participants to the cluster (Morrison, 2004; Norton, 1992) because this tacitness makes 
them difficult to access by elements outside the community. Co-location within a 
concentrated geographical area is a basis for development of other characteristics of a cluster. 
The most important factor for a functioning cluster is the formation of close ties or alliances 
among the different actors and the degree of cooperation established to improve the 
competitiveness of the group beyond the incidental (usually external) effects that promote the 
gathering (Andersson et al., 2004; Mishan, 1971).  

A tourism destination, in first approximation, may be considered an example of such a cluster. 
The mutually dependent attractions, services, transportations, and environmental or cultural 
resources emphasize the need for collaboration. This is mainly driven by demand. In fact, as 
Gunn states (1997: 108): “A traveler is more likely to seek the great diversity and volume of 
services when they are located together. And businesses in such clusters benefit from local as 
well as travel trade.”  

Destination clusters generally establish spontaneously and evolve and change over time, 
driven by both internal and external factors. They are not isolated entities, but open systems 
with complex linkages to a number of similar or diverse other systems. The development of 
new competitive products and services is very often done in cooperation with other 
ensembles, and the interface between different agglomerations allows the creation of new 
value (Nordin, 2003). 

The terms cluster and district are often used almost interchangeably. However, the two 
concepts have a fundamental difference. This can be seen in the works of the two most 
influential scholars in this field. 

Industrial clusters are “geographic concentrations of interconnected companies and 
institutions in a particular field” (Porter, 1998: 78). The basic characterizing feature is the 
belonging to a specific sector; the participating firms are connected by horizontal or vertical 
relationships and concentrated in a specific area. They may be complemented by some 
‘external’ entities such as the public institutions. The focus, however, remains the 
entrepreneurial and business dimension. 

On the other hand, the vision of the Italian school interprets a district as an extension of this 
specialized spatial concentration idea. Becattini (1990) adds to the focus on ‘industries’ a full 
recognition of the importance of the social environment (including regional governments and 
trade associations) of the area in which the district works and, perhaps more important in this 
globalization age, the understanding of the role of the linkages with the ‘external’ world. This 
approach seems to be much closer to what the reality of these agglomerations is and much 
more suitable as a framework for the study of a tourism destination. 
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Even in this case there are differences for which the district model needs some adaptation to 
be used as a framework in the tourism field. As said, the ‘product’ has peculiar characteristics: 
it is mainly a service product, whose intangibility, inseparability, heterogeneity and 
perishability make it rather different from ‘usual’ industrial goods (Vanhove, 2005). In 
addition, the acquisition and consumption of the tourism product is typically separated by 
space and time so that potential visitors are unable to fully assess product attributes prior to 
consumption (Burns, 1999; Cooper et al., 2005; Mill & Morrison, 1992). 

The district interpretation of a tourism destination considers it as formed by two main classes 
of interacting components (Antonioli Corigliano, 1999, 2000; Capone, 2004; Lazzeretti & 
Petrillo, 2006; Stamboulis & Skayannis, 2003):  

 a large endowment of resources: natural, cultural, artistic, but also artificially built, 
such as museums, theme parks or sport complexes;  

 a network of groups of actors: economic, non-economic and institutional, whose 
prevalent activity is providing tourism-related services to visitors and travelers. 

The stakeholders of a destination district include, in the tradition of the Becattinian school, 
not only those whose core activity is ‘tourism’ as it would be in a Porterian cluster, but also 
the local social system, the various institutional entities (local or country governments, 
associations etc.) and other organizations whose activity, although not directly of touristic 
nature, are deemed essential for the good functioning of the system as a tourism destination. 
Even the geographical delimitation can be somewhat relaxed since virtual groupings with 
entities external to the specific area can be established, thus overcoming the need for a strict 
physical proximity. 

A tourism destination is not a static system. It evolves over time passing through different 
evolutionary phases. The analysis of the development of tourism destinations is an important 
theme in tourism studies. The literature on this subject has been built, basically, around the 
idea of a tourism area life cycle (TALC), originally proposed by Butler (1980). This model is 
composed by applying to the development cycle of a tourism destination the theories on the 
evolution of products (product life cycle model), dating from the 1950s, that were well 
established in consumer marketing studies by the time that Butler adapted the framework. A 
new product is launched, achieves acceptance and growth until competitors gain market share 
(Gardner, 1987). Then, innovation or repositioning is necessary to withstand declines in sales 
and profits. Butler applies these principles to dynamic, market-driven tourism development 
and suggests that successful destinations pass through a sequence of growth stages 
(exploration, involvement, development, consolidation, then stagnation followed by either a 
decline or a rejuvenation) that follow an s-shaped logistic curve and is similar to the one used 
to describe the general evolution of an industrial district).  

The TALC model has been applied to many areas and in many cases has proved to be quite 
effective in describing or explaining the tourism history of a district. It has been commented 
on, improved, developed and criticized numerous times (Butler, 2005a, 2005b). Many authors 
have used it to demonstrate its application in specific situations (Agarwal, 2002; Baum, 1998; 
Cooper & Jackson, 1989).  

The concept of tourism destination implies a systemic approach in tourism studies – an 
approach in which the main focus is given to the activities and the strategies to foster the 
development of an area pictured as an interconnected system of actors cooperating in order to 
supply integrated tourist products.  
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Network science 

The historical development of network science reveals a number of streams of thought (Scott, 
Baggio, & Cooper, 2008; Scott et al., 2007). One is mathematically-based social network 
analysis, considering the abstract characteristics and properties of ‘ideal’ networks such as 
found in the work of Burt (1992; 1997). The second is qualitative social science-based in 
which a network is viewed as an analogy for the interactions between individuals in a 
community such as the policy networks approach of Rhodes (1990; 1997). The third is the 
physicist’s view of complex networks explored in the framework of statistical physics and 
complexity theory (Albert & Barabási, 2002; Boccaletti et al., 2006). While each of these 
three streams has advantages for the study of tourism, this paper focuses on the latter stream 
of thought. 

A network is normally represented by a drawing in which the various elements are shown as 
dots and the connections among them as lines linking pairs of dots. This drawing, a 
mathematical abstraction, is called a graph and the branch of mathematics known as graph 
theory establishes the framework providing the formal language to describe it and its features. 
This tradition was begun by Euler (1736) in the 18th century, and formally established by 
König (1936) at the beginning of 20th century and has provided a widespread set of tools for 
analyzing graphs and the networks represented by them. The application of networks in the 
social sciences using graphs and related tools (i.e. social network analysis) developed in the 
first half of 20th century (Barnes, 1952; Moreno, 1934; Radcliffe-Brown, 1940; Simmel, 
1908). The basic idea is that the structure of social interactions influences individual 
decisions, beliefs and behavior (Scott, 2000). The analyses are conducted on patterns of 
relationships rather than concentrating upon the attributes and behaviors of single individuals 
or organizations (Wasserman & Galaskiewicz, 1994). By the end of 1990s, the methods and 
possibilities of social network analysis were well established and formalized (Freeman, 2004; 
Scott, 2000; Wasserman & Faust, 1994; Wellman & Berkowitz, 1988), and network analysis 
also was adopted as a diagnostic tool in applied fields such as management and organization 
studies (Cross et al., 2002; Haythornthwaite, 1996; Tichy et al., 1979). Social network 
analysis studies, while useful, tended to view the social system as static and were often 
criticized on the basis that they ignored the dynamic nature of organizations and groups. 

Meanwhile scientists examining many natural and artificial systems had documented dynamic 
behavior that was non-linear and indeed exhibited complex or chaotic patterns over time. This 
led, in the second half of the 20th century to detailed study and modeling of such nonlinear 
complex systems, facilitated by the power of modern computers albeit based upon ideas 
which date from the 18th century. The consideration of the dynamic properties of networks 
began in the 1960s with the seminal work of Erdös and Rényi (1959, 1960, 1961) who 
presented a model of a random network. The authors showed that dynamic growth in the 
number of connections gives rise to phenomena such as the formation of giant fully connected 
subnetworks, which seem to arise abruptly when some critical value of link density is 
attained. This finding attracted the interest of statistical physicists, well accustomed to 
analysis of these kinds of critical transitions in large systems. Three provocative papers 
(Barabási & Albert, 1999; Faloutsos et al., 1999; Watts & Strogatz, 1998) in the late 1990s 
placed the analysis of networked systems in the context of statistical physics, providing a 
strong theoretical basis to these investigations, and justifying the search for universal 
properties of networked objects. The models proposed in this context have made it possible to 
describe the static, structural and dynamic characteristics of a wide range of both natural and 
artificial complex networks and have highlighted the linkage between the topological 
properties and the functioning of a system, almost independent of the nature of the system’s 
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elements (Boccaletti et al., 2006; Caldarelli, 2007; Watts, 2004). There is a growing literature 
applying these methods to the exploration of social and economic systems, driven by the 
interest in self-organizing processes and emergence of ordered arrangements from 
randomness (Ball, 2003; Castellano et al., 2007; Stauffer, 2003). 

Complexity and network science: the theoretical framework 

There is no formal designation of a complex adaptive system despite a growing literature and 
debate by many. Instead, many authors characterize a system as complex and adaptive by 
listing the properties that these systems exhibit (see for example Cilliers, 1998; Levin, 2003; 
Ottino, 2004). The most common and significant properties are:  

 the system is composed of a large number of interacting elements; 
 the interactions among the elements are nonlinear; 
 each element is unaware of the behavior of the system as a whole, it reacts only to 

locally available information; 
 the system is usually open and in a state far from equilibrium; and 
 complex systems have a history, their actual and future behavior depend upon this 

history and are particularly sensitive to it. 

Many real world ensembles are complex adaptive systems, as in economics where “even the 
simple models from introductory economics can exhibit dynamic behavior far more complex 
than anything found in classical physics or biology” (Saari, 1995: 222). 

The tourism sector shares many of these characteristics. A tourism destination encompasses 
many different companies, associations, and organizations and their mutual relationships are 
typically dynamic and nonlinear (Michael, 2003; Smith, 1988). The response of stakeholders 
to inputs from the external world or from inside the destination may be largely unpredictable 
(Russell & Faulkner, 2004). During the evolution of the system it is possible to recognize 
several reorganization phases in which new structures emerge such as the development of a 
coordinating regional tourism organization. Besides these ‘particular’ or unique behaviors, 
however, the system as a whole may also be found to follow general ‘laws’. Models such as 
the one by Butler (1980), although discussed, criticized, amended and modified (Butler, 
2005a, 2005b), are generally considered able to give meaningful descriptions of a tourism 
destination and, in many cases, have proved useful tools for managing destination 
development despite the peculiarities of individual case studies. More detailed studies can be 
found which have assessed the ‘complex’ nature of tourism systems, both in a qualitative and 
a quantitative way (Baggio, 2008; Farrell & Twining-Ward, 2004; Faulkner & Russell, 1997). 

According to Amaral and Ottino (2004), the toolbox available to study such complex systems 
derives from three main areas of research: nonlinear dynamics, statistical physics and network 
science. First, research since the end of the 19th century, the physicist’s view of complex 
networks mentioned above, has yielded several mathematical techniques which allow 
approximation of the solutions to the differential equations used to describe a nonlinear 
system which were proven to be non-solvable analytically. Today, the availability of powerful 
computers makes it possible to use numerical models and simulations able to apply these 
techniques and thus chaotic and complex systems can be described in terms of the collective 
behaviors of their elementary components.  

Second, research in statistical physics has provided macroscopic (statistical) approximations 
for the microscopic behaviors of large numbers of elements which constitute a complex 
system. In particular, it provides a theoretical foundation to the study of phase transitions 
(such as the one occurring to water in passing from liquid to solid or vapor) and the critical 
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conditions governing them. Within the statistical physics framework, the analysis of data, the 
development and evaluation of models, or the simulation of complex systems are carried out 
with the help of tools such as nonlinear time series analysis, cellular automata, and agent-
based models (see Shalizi, 2006 for an excellent review). 

Two important concepts stem from this statistical physics tradition: universality and scaling 
(Amaral & Ottino, 2004). Universality is the idea that general properties, exhibited by many 
systems, are independent of the specific form of the interactions among their constituents, 
suggesting that findings in one type of system may directly translate into the understanding of 
many others. Scaling laws govern the variation of some distinctive parameters of a system 
with respect to its size and the mathematical expression of these laws applied to complex and 
chaotic systems involves a power law, now considered a characteristic signature of self-
similarity. 

The third area of research is based on the idea that a network can be used to represent many 
complex systems. The interactions among the different elements lead, in many cases, to 
global behaviors that are not observable at the level of the single elements, and they exhibit 
characteristics of emergence typical of a complex system. Moreover, their collective 
properties are strongly influenced by the topology of the linking network (Barabási, 2002; 
Buchanan, 2002). This is the approach followed in the rest of this paper. 

Characterization of complex networks 

Born at the intersection of physics, mathematics, biology, sociology, economics and other 
disciplines, network science employs specific terminology and methods. Moreover as a 
‘young’ discipline, new definitions, algorithms and interpretations are frequently proposed, 
and the consequent lack of ‘uniformity’ may create difficulties in approaching the topic. This 
situation is discussed in the extensive reviews by Boccaletti et al. (2006) or da Fontoura Costa 
(2007), or books such as those by Caldarelli (2007) or Dorogovtsev and Mendes (2003). 

Mathematically speaking (Bollobás, 1998), a network is represented by a graph G which is an 
ordered pair G: = (V,E). The following conditions apply: V is a set, its elements are called 
vertices or nodes; E is a set of pairs of distinct nodes, called edges or links. The number of 
nodes n is called the order of the graph and the number of edges m is called size. The degree 
of a node is the number of edges connecting it to some other nodes. A node (also called 
vertex, actor) can represent simple ‘objects’ (a word in a semantic network), or complex ones 
(a firm or a biological individual) when we want to concentrate on the overall properties of 
the ensemble rather than on the individual’s behavior. 

An edge (also termed link or tie) denotes some type of relationship between two nodes. It can 
be a simple information exchange, a chemical reaction, a force, a road and so forth. Links can 
be symmetric (an information exchange) or directed (a flight from one airport to another) and 
can be assigned a weight w, i.e. a measure of strength, importance, value. These 
characteristics of links are also transferred to the whole graph. We thus speak of undirected 
(symmetric), directed, weighted graphs or combinations of these (e.g. directed weighted 
graph). The graph can also be represented by an n×n matrix A, called an adjacency matrix. If 
there is an edge from some node x to some node y, then the element ax,y has a value different 
from 0. Its value will be 1 for unweighted graphs, w for weighted graphs. If the graph is 
undirected, A is a symmetric matrix. There is a full correspondence between a graph, a 
network and an adjacency matrix, therefore the three terms are used indiscriminately. In 
particular the identification between a graph and an adjacency matrix makes available to a 
network scientist all the powerful methods of linear algebra to investigate network 
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characteristics. Figure 1 gives an example of different types of networks and their adjacency 
matrices. 

 
Figure 1 Different graphs: undirected (A), directed (B), weighted undirected (C) and 
weighted directed (D) with their adjacency matrices 

The inter- and multi-disciplinary origin of network science has led, as said, to a wide variety 
of quantitative measurements of their topological characteristics (see da Fontoura Costa et al., 
2007 for a thorough review). The literature on complex networks commonly uses the 
following, which have been found to typify more fully a network’s structure. In the following 
formulas: n = number of nodes; m = number of links; k = nodal degree (number of links a 
single node has); d = distance (length of shortest path connecting any two nodes); the 
subscript i (or j) refers to a generic node. Based on the adjacency matrix (aij is an element of 
the matrix), m and k can be calculated as follows: ∑∑=

i j
ijam  and ∑=

i
iji ak . 

The main network metrics are: 
 

 density: the ratio between m and the its size and the maximum possible number of 

links that a graph may have: 
)1(

2
−

=
nn

mδ ; 

 path: a series of consecutive links connecting any two nodes in the network, the 
distance between two vertices is the length of the shortest path connecting is them, the 
diameter of a graph is the longest distance (the maximum shortest path) existing 
between any two vertices in the graph: )max( ijdD = , the average path length in the 

network is the arithmetical mean of all the distances: ∑
≠−

=
ji

ijd
nn

l
)1(

1 . Numerical 

methods, such as the well known Dijkstra's algorithm (Dijkstra, 1959), are used to 
calculate all the possible paths between any two nodes in a network. 
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 clustering coefficient: represents the degree of concentration of the connections of the 
node’s neighbors in a graph and gives a measure of local inhomogeneity of the link 
density. It is calculated as the ratio between the actual number ti of links connecting 
the neighborhood (the nodes immediately connected to a chosen node) of a node and 

the maximum possible number of links in that neighborhood: 
)1(

2
−

=
ii

i
i kk

t
C . For the 

whole network, the clustering coefficient is the arithmetic mean of the Ci: 

∑=
i

iC
n

C 1 ; 

 proximity ratio: the ratio between clustering coefficient and average path length 
normalized to the values the same network would have in the hypothesis of a fully 

random distribution of links: 
randrand lC

lC
/
/=μ ; 

 efficiency (at a global Eglob or local Eloc level): a measure of the capability of the 
networked system (global) or of a single node (local) to exchange information. 

∑
≠−

=
ji ij

glob dnn
E 1

)1(
1 . ∑

≠−
=

ml lmii
iloc dkk

E ',
1

)1(
1 ; for the whole network its average 

(called local efficiency of the network) is: ∑=
i

ilocloc E
n

E ,
1 ; 

 assortative mixing coefficient: gauges the correlation between the degrees of 
neighboring nodes. If positive, the networks are said to be assortative (disassortative 
otherwise). In an assortative network, well-connected elements (having high degrees) 
tend to be linked to each other. It is calculated as a Pearson correlation coefficient; dgi 
is the degree of node i, dni the mean degree of its first neighbors: 

∑∑

∑
−−

−−
=

i
i

i
i

i
i

i

dndndgdg

dndndgdg
r

22 )()(

))((
; the standard error can be calculated by using the 

bootstrap method (Efron & Tibshirani, 1993). 

One important factor, found to be a strong characterizer of a network topology is the 
distribution of the degrees of its nodes. This is usually expressed as a statistical probability 
distribution P(k), i.e. for each degree present in the network, the fraction of nodes having that 
degree is calculated. The empirical distribution is then plotted and fit to find a functional 
(continuous) relationship. A cumulative version of the degree distribution P(>k) is also used. 
It gives the probability (fraction) of nodes having degree greater than a certain value (from the 
list of the values existing in the network). 

A complex network exhibits, in many cases, some form of substructure. Local subgroups can 
have a ‘thickening’ of within-group connections while having less dense linkages with nodes 
outside the group (see Figure 2). The study of this modular structure of communities has 
attracted academic attention, since communities are a common trait of many real networked 
systems and may be central for the understanding of their organization and evolution. It may 
be possible, for example, to reveal social structure through communication patterns within a 
community. 
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Figure 2 A modular network with a strong modularity (modularity index = 0.57). Dotted 
lines mark the three communities characterized by having a denser set of links inside 
them than towards other components of the network 

Different definitions of modularity exist and several methods have been proposed to measure 
it. They rely on numerical algorithms able to identify some topological similarity in the local 
patterns of linking (Arenas et al., 2004; Danon et al., 2005). In all of them, however, a 
measure called the modularity index is used to gauge the effectiveness of the outcomes 
(Clauset et al., 2004; Girvan & Newman, 2002). It is defined as: ∑ −=

i
iii aeQ 2)( , where eii 

is the fraction of edges in the network between any two vertices in the subgroup i, and ai the 
total fraction of edges with one vertex in the group. In other words, Q is the fraction of all 
edges that lie within a community minus the expected value of the same quantity in a graph in 
which the nodes have the same degrees but edges are placed at random. All of the metrics 
described in this section can be calculated with the help of standard software packages such as 
as Pajek (Batagelj & Mrvar, 2007) or Ucinet (Borgatti et al., 1992). 

Network models 

After Euler (1736), probably the most important advancement in the study of networks is the 
work done by Erdös and Rényi. In a series of papers (Erdös & Rényi, 1959, 1960, 1961) they 
propose a model (ER model) in which a network is composed of a set of nodes and the links 
are placed randomly between pairs of nodes with probability p. The resulting degree 
distribution (in the limit of large numbers of nodes and links) follows a Poisson law with a 

peak 〈k〉 (the average degree of the network): k
k

e
k
k

kP −≈
!

)( . 

Diameter, clustering coefficient and average path length of an ER network are proportional to 
the number of nodes and the probability p. The network also shows an interesting behavior 
when the connection probability increases. Over a certain critical threshold pc , a very large 
group of connected nodes encompassing most if not all of the nodes (depending on the value 
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of p>pc), a giant cluster, forms. Below pc the network is composed of several disconnected 
subgraphs. 

In the late 1990s, three influential papers (Barabási & Albert, 1999; Faloutsos et al., 1999; 
Watts & Strogatz, 1998) presented empirical evidence of networks exhibiting topological 
characteristics different from those hypothesized by Erdös and Rényi. Watts and Strogatz 
(1998) discussed networks in which, contrary to what was expected from an ER model, the 
clustering coefficient was much higher, and, at the same time, the average path length 
remained small. Reminding them of the Milgram experiment (Milgram, 1967), they named 
these networks small-world (SW). In a small-world network, and as happens in many social 
networks, any two nodes are likely to be connected through a very short sequence of 
intermediate neighbors. Many examples of real world networks have this characteristic (da 
Fontoura Costa et al., 2008). 

 
Figure 3 Degree distributions: Poissonian (A) and Power-law (B). The distributions refer 
to networks of the same order (1000 nodes) and size (3000 links) and are drawn on a 
chart with logarithmic axes. While the Poisson distribution shows a characteristic curved 
shape, the power-law distribution is a straight line 

Faloutsos et al. (1999) and Barabási and Albert (1999), on the other hand, found evidence of 
networks having a degree distribution quite different from the random Poissonian ER 
distribution. Their networks exhibit a power-law scaling: P(k) ∼ k-γ with an exponent γ > 1. In 
other words, in their networks, a small fraction of nodes have a large number of immediate 
neighbors (they are often called hubs), while a large number of nodes have a low degree (see 
Figure 3). 

These networks are called scale-free (SF) because they do not have a distinctive ‘scale’; a 
typical number of connections per node as is found in a Poissonian ER network in which the 
average (mean) degree characterizes the distribution. The SF model, first proposed by 
Barabási and Albert (1999), is a dynamic model. The power-law degree distribution is 
obtained if we consider a network as formed by adding nodes at successive time intervals, and 
adding links with a preferential attachment mechanism. A new node will connect with higher 
probability nodes with high degrees. This kind of rich-get-richer phenomenon has been 
observed in a large number of real networks, and has had several additions and modifications 
to account for the differences measured between the theoretical model and the real networks. 

Thus, we can modify the basic model by thinking of introducing a fitness parameter, which 
greatly increases the probability that a newly added node has to be selected by the subsequent 
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nodes; an aging limitation for which a node’s capability to accept connections ends at a 
certain time interval (age); or an information constraint which puts a limit to the number of 
nodes among which a newcomer can select those to connect. Moreover, even in networks not 
growing by the addition of nodes, links can be added, deleted or moved (rewired) to adapt the 
network to specific conditions, and, thus besides the preferential attachment family, other 
mechanisms able to generate a power-law degree distribution exist (Albert & Barabási, 2002; 
Bornholdt & Schuster, 2002; Caldarelli, 2007; Dorogovtsev & Mendes, 2003; Durrett, 2006; 
Li et al., 2005; Newman, 2003b).Mixed topologies have also been studied, both as abstract 
models (Mossa et al., 2002) and empirical observations (Baggio et al., 2007; Pennock et al., 
2002). The main characteristic of these networks is that they have a degree distribution which 
follows a power law for most part, but also has a bending or cut-off point. In statistical 
physics, power laws are associated with phase transitions (Landau & Lifshitz, 1980; Langton, 
1990) or with fractal and self-similarity characteristics (Komulainen, 2004). They also play a 
significant role for the description of those critical states between a chaotic and a completely 
ordered one, a condition known as self-organized criticality (Bak, 1996; Bak et al., 1988). In 
other words finding a power law is one more confirmation of the ‘complexity’ of the 
networked systems studied.  

As previously noted, many real networks exhibit scale-free properties. Tourism-related 
examples include the world-wide airport network (Guimerà & Amaral, 2004), the websites of 
a tourism destination (Baggio, 2007), the structural properties of interorganisational networks 
within destinations (Scott, Cooper, & Baggio, 2008), the paths followed by tourists reaching a 
destination by car (Shih, 2006), or the world-wide flows of tourist arrivals (Miguéns & 
Mendes, 2008). Many of these networks also exhibit small-world properties. 

The wide variety of network models and empirical cases can be summarized following the 
classification proposed by Amaral et al. (2000). These authors use the degree distribution P(k) 
to identify three broad classes of networks: 

 single-scale: the degree distribution behaves exponentially (or with Gaussian or 
Poissonian tails). Members of this class are the random ER graphs and small-world 
networks. The latter, even if characterized by large clustering coefficients and short 
average path lengths still exhibit a Poissonian degree distribution; 

 scale-free: the dynamic networks unveiled by Barabási with a power-law degree 
distribution. They are characterized by having few nodes acting as very connected 
hubs and a large number of low degree nodes. No characteristic mean nodal degree 
(scale) exists. These networks grow with the addition of new nodes and new links that 
follow specific mechanisms such as the preferential attachment in which a new node 
has a higher probability to attach to one of the most connected ones. This is the case of 
the tourism web network analyzed by Baggio (2007) and the Australian destinations 
studied by Scott, Cooper and Baggio (2008b); 

 broad-scale: a large class of networks with mixed types of degree distributions. Most 
of these have a basic power-law shape with a sharp cut-off of the low degree tail 
(exponential or Gaussian decay). Examples are the airport networks of China (Li & 
Cai, 2004) or India (Bagler, 2008) or the flows of tourists across countries (Miguéns & 
Mendes, 2008). 

Besides the general depiction of the structural characteristics of the diverse networked 
systems presented, and beyond the different models and interpretations proposed, the 
literature on complex networks almost unanimously points out the strong relationship 
between the topological structure and the functioning of the system described. 
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Dynamic processes 

A complex system is a dynamic entity. Economies, companies or tourism destinations can be 
thought of as living organisms existing in a state quite far from a static equilibrium. The only 
time in which they are in a full static equilibrium is when they are dead (Jantsch, 1980; 
Ulgiati & Bianciardi, 1997; Weekes, 1995). In the literature, the growing interest in 
development of models for a tourism destination (Butler, 2005a, 2005b), or the numerous 
methods devised to forecast some characteristic such as tourist demand (Song & Li, 2008; 
Uysal & Crompton, 1985; Witt & Witt, 1995, 2000) are good testimonials of the dynamic 
nature of these systems and the appeal of the study of these characteristics. 

As discussed above, analysis of the topological properties of complex networks has provided 
interesting and useful outcomes as well as intriguing from a theoretical point of view. It is no 
surprise then to find that this area has received even a greater attention. Growth processes 
have been studied for all the basic network types discussed in the previous section: the 
random (ER) graphs and the different types of scale-free networks. In this section we describe 
two dynamic processes which may occur to and in a network that have a great importance for 
a tourism destination, our unit of analysis.  

The first characteristic, verified in many real-world systems, is their resilience, i.e. “the 
capacity of a system to absorb disturbance and reorganize so as to still retain essentially the 
same function, structure, identity, and feedbacks” (Walker et al., 2004: 2). In a complex 
network this can be assessed by looking at how its structural characteristics change when 
links or nodes are removed from the network. Several numerical simulations have shown that 
the behavior of a complex network ‘under attack’ is strongly dependent upon its basic 
topology (Albert et al., 2000; Boccaletti et al., 2006; Crucitti et al., 2004). If we use, for 
example, the efficiency of a network as a metric to compare different conditions, we find a 
situation like the one depicted in Figure 4. 

 
Figure 4 Effects of random (errors) and targeted removals (attacks) for random (ER) and 
scale-free (BA) networks (f is the fraction removed) on the efficiency (E) of the system 
(adapted from Boccaletti et al., 2006). The BA network shows a better capacity to absorb 
random removals than an ER network, but is much more sensitive to targeted attacks to 
the high degree nodes 

In the case of a purely random removal, a SF network’s efficiency decreases at a much lower 
rate than an ER network. The scale-free topology adds robustness to the system. When the 
high degree nodes are targeted, the attack proves to be much more disruptive if the attack is 
directed toward the hubs of an SF network. Removing just a small fraction of these (less than 
15%) can completely destroy the connectivity and leave the system as a set of isolated islands. 
Models based on this type of analysis could explain the resilient behavior of tourism systems 
after suffering major shocks such as the 9/11 attacks on the USA (see also Baggio, 2008). 
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One of the advantages of being able to represent a system with a ‘mathematical’ object is that 
it is easier to perform a simulation of some kind of process. A simulation can be a powerful 
tool to create different scenarios and the numerical methods invented so far have been 
transformed into computer programs and used in a wide number of disciplines. For systems 
such as social groups, this technique is, in many cases, the only one available to perform 
experiments and to study different settings (Axelrod, 2006; Gilbert, 1999; Inbar & Stoll, 
1972). Obviously, as the most important literature (e.g. Balci, 2003; Gilbert, 1999; Stauffer, 
2003) on the subject reports, when a social system is involved some precautions must be 
taken. In order to ensure the reliability and validity of the results, some conditions must be 
met: a strong conceptual model is the most important prerequisite, along with the credibility 
which may derive from the specific techniques used and the comparison with possibly 
available analytical results or real responses of the system (Adrion et al., 1982; Balci, 2003). 
If this happens, numerical simulations of socio-economic systems can provide very effective 
tools to support management practices different from the usual, and make feasible that 
adaptive approach advocated by those convinced that a tourism destination is a complex, and 
sometimes even chaotic, system and that should be dealt with in a non-deterministic way 
(Farrell & Twining-Ward, 2004; Faulkner & Russell, 1997; Russell, 2006). 

The diffusion of information or knowledge is a crucial process for the balanced development 
of a destination and the determinants which may favor this process are of paramount 
importance (Argote et al., 1990; Cooper, 2006; Cooper & Scott, 2005). The network effects 
on this process are well known (Valente, 1995; Wendt & Westarp, 2000), but the possibility 
of a numerical simulation in the framework of network science can be of great theoretical and 
practical value. 

 
Figure 5 Fraction of infected individuals (ρ) as a function of spreading rate (λ) for a SF 
network (solid line) compared to an ER network (dotted line) (after Pastor-Satorras & 
Vespignani, 2003). In an ER network the presence of a threshold for initiating the 
diffusion is evident while an SF network is lacking a critical onset of the epidemic 

Let us consider the diffusion of a message in a network and observe the influence of the 
network topology. Epidemiological diffusion is a well-known phenomenon for which 
complete mathematical models have been devised (Hethcote, 2000). It has been known since 
the work of Kermack and McKendrick (1927) that the process shows a clearly defined 
threshold condition for the spread of an infection. This threshold depends on the density of the 
connections between the different elements of the network. However, this condition is valid 
only if the link distribution is random (as in an ER network). In some of the structured, non-
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homogeneous networks that make up the majority of real systems (e.g. SF networks), this 
threshold does not exist (see Figure 5). Once initiated, the diffusion process unfolds over the 
whole network (Pastor-Satorras & Vespignani, 2003). 

Methodological issues 

There are two key issues to be considered in progressing network science and the study of 
tourism. The first of these is the epistemological legitimacy of applying the laws and methods 
of physics to a social activity such as tourism. The second relates to the practicalities of 
collecting data pertaining to a network. 

Epistemology 
Applying the laws and methods of physics to a socio-economic system such as a tourism 
destination may raise an issue of epistemological legitimacy and is an area where there is little 
relevant prior literature. While a variety of works deal with these questions for both natural 
and social sciences, and examine the attitudes and positions of researchers with regard to their 
approaches and methodologies (Durlauf, 1999; van Gigch, 2002a, 2002b), the specific 
problem of the applicability of a ‘physical’ approach to social systems is discussed very little 
and mostly only as a secondary topic. Physicists do not seem to feel the necessity to 
epistemologically justify their use of the knowledge and tools of physics in investigating other 
fields. Justifications and discussions are the job of the epistemologist and usually come very 
late in the development of a field of study. Certainly justifications are not considered 
necessary when, as in the case of network science, a discipline is still in a very early stage of 
development.  

From a sociologist’s perspective however, the application of physical network theory may be 
rejected as irrelevant because it fails to address the recursive agency in the behavior of groups 
of people. Recursive agency refers to the ability of individuals to recognize their networked 
relationships and take proactive steps to change or modify their behavior. Thus, the 
applicability of ‘physical laws’ governing human behavior is refused as non applicable. One 
of the reasons for this refusal can be that a non-physicist has, sometimes, a mistaken idea of 
what physics is. Bernstein et al. (2000), for example, consider that sociologists mistakenly 
believe the ideas of physics are mainly those of Newtonian mechanics where single or small 
sets of particles are studied. Such particles have well defined characteristics (mass, velocity, 
energy) and, more importantly, their equations of motion can be described and investigated. 
Based on this idea, sociologists consequently object that a ‘social actor’ is completely 
different from these homogeneous particles, as a social actor’s behavior is influenced by their 
personal history, beliefs and personality and thus a system of particles is too simplistic a 
representation. 

However, physicists may have different aims from achieving such individual predictive 
outcomes. For example in studying a socio-economic system we may be focused on its global 
behavior and in the possibility of making predictions at a system level rather than seeking to 
predict the conduct of single elements (individual actors). This alternative aim seeks to 
understand how regularities may emerge (when they do) out of the apparently erratic behavior 
of single individuals (Majorana, 1942). In this perspective, a comparison of theoretical 
predictions with empirical data has the primary objective of verifying whether the trends seen 
in the data are compatible with a ‘reasonable’ conceptual modeling of the idealized actors and 
whether there is some level of consistency or additional factors are required to provide an 
explanation. 
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In these circumstances, as Castellano et al. (2007) note, only high level characteristics, such 
as symmetries, energy balance, or conservation laws are relevant. These, as the findings of 
statistical physics show, do not depend on the individual details of the system but possess 
some universal characteristics. Thus if the aim is to examine such global properties, it is 
possible to “approach the modelization of social systems, trying to include only the simplest 
and most important properties of single individuals and looking for qualitative features 
exhibited by models” (Castellano et al., 2007: 2). These considerations lead us to justify the 
application of the laws and methods of statistical physics to the study of a socio-economic 
system such as a tourism destination, with the condition that the quantitative techniques rely 
on sound and accepted qualitative interpretations of the phenomena as described in this paper. 

The vast theoretical and empirical literature accumulated in recent years has shown network 
science to be an effective tool for understanding complex systems. The empirical study 
described in this paper gives us an example of the application of network analysis methods to 
a tourism destination. 

Data collection 
On many occasions full enumeration of data regarding a network (nodes and links) is not 
possible. This is especially true for social and economic systems, and is certainly the case for 
a tourism destination. It is possible to use sampling to study complex networks but this 
requires careful application. As long as we are considering a system in which the elements are 
placed at random, as in the case of an ER network, ‘standard’ statistical considerations can be 
made, and the significance of the sample assessed with standard methods (Cochran, 1977). 
We have seen, however, in the previous section, that the effects of removing links or nodes 
from a non-homogeneous system such as an SF network can lead to dissimilar results and is 
‘element dependent’. We may easily imagine, then, that a sample of a network missing some 
critical hubs could lead us to wrong conclusions when examining its topology. 

The literature on the subject is not extensive. The problem has been highlighted only as a 
consequence of recent discoveries in the field. It has been found that in the case of a 
structured network (scale-free, for example) it is not possible to easily determine the 
significance of a sample collected. Depending on the results of the analysis of the data 
available, the researcher needs to judge and make an educated guess of the final topology 
exhibited by the whole ‘population’, i.e. the whole network. In the cases in which this is 
possible, then, what can be done is to know how some of the main network metrics vary with 
the size of the sample and the topology of the network. 

More ‘quantitatively’, according to the literature, in the case of a SF network, degree 
distribution exponent and average path length decrease when nodes or links are sampled, 
assortativity coefficient has little or no change and the clustering coefficient decreases when 
nodes are sampled while increases when links are sampled (Kossinets, 2006; Lee et al., 2006; 
Stumpf & Wiuf, 2005). 

A case study: a tourism destination 

The network analysis methods described in the previous sections are applied here to a specific 
case, an Italian tourism destination: the island of Elba which is located in the centre of the 
Tyrrhenian Sea and is a typical ‘sun and sand’ destination. Elba’s economy depends mainly 
on the wealth generated by about half a million tourists spending some 3 million nights per 
year. Elba was selected for study as it is geographically distinct, has accessible records 
concerning tourism actors and with a scale suitable for detailed examination. The core tourism 
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organizations (hotels, travel agencies, associations, public bodies etc.), identified from the 
official local tourism board, form the nodes of the network. The connections among them 
were enumerated by consulting publicly available documents such as membership lists for 
associations and consortia, commercial publications, ownership and board of directors 
records. The data obtained and the completeness were validated with a series of structured and 
unstructured interviews with a selected sample of local ‘knowledgeable informants’ such as 
the directors of the local tourism board and of the main industrial associations, or consultants 
active in the area. These interviews revealed a very limited number of links that were not 
previously discovered and it seems reasonable to assume that the final layout has a 
completeness of about 90%. All the links are considered undirected and of equal weight. The 
network thus obtained is depicted in Figure 6. 

 
Figure 6 The Elba destination network 

 

The metrics calculated for this network are summarized in Table 1. As a comparison the 
second column contains the values calculated for a random (ER) network of the same order 
and size (the values are averages over 10 realizations). The last column of Table 1 reports 
typical values for social networks published in the literature (see for example Albert & 
Barabási, 2002; Boccaletti et al., 2006; Dorogovtsev & Mendes, 2002; Newman, 2003b). 

The degree distributions (differential and cumulative) for the network are shown in Figure 7. 
The shape of the distribution follows a power law P(k) ∼ k-α. The exponent (and its standard 
error), calculated following the procedure proposed by Clauset et al. (2007) is α = 2.32±0.27. 
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Table 1 Elba destination network metrics compared with a random network of the same 
order and size and with typical values for social networks 

 
Metric Elba network Random Social networks 

No. of nodes 1028 1028  
No. of links 1642 1642  
Density 0.003 0.003 10-1 - 10-2 
Disconnected nodes 37% 3%  
Diameter 8 13 10 
Average path length 3.16 5.86 10 
Clustering coefficient 0.050 0.003 10-1 
Proximity ratio 34.09 N/A 102 - 103 
Average degree 3.19 3.25  
Global efficiency 0.131 0.169 10-1 
Local efficiency 0.062 0.003 10-1 
Assortativity coefficient -0.164±0.022 0.031±0.033 10-1 (>0) 

 
Figure 7 The degree distributions of Elba destination network. P is the frequency of nodes 
having degree k (A) or greater than k (B, the cumulative distribution) 

The density of links is quite low, considering that the values found in the literature for the 
social networks studied are typically of the order of 10-1 – 10-2 (Albert & Barabási, 2002; 
Boccaletti et al., 2006; Caldarelli, 2007). Moreover, the percentage of nodes without 
connections is very high (39%). This results in a sparse network, also confirmed by the small 
value of the clustering coefficient. The efficiency of the Elban network is consequently quite 
low, both at a global and a local level. Another value which is different from what would have 
been expected in considering a socio-economic network such as Elba is the assortativity 
coefficient. This, as seen in section 3, represents the tendency of a node to connect with nodes 
having similar degrees. The correlation has been found positive for many of the social 
networks examined by the literature (Newman, 2002), and, while debated by some authors 
(Whitney & Alderson, 2006), this positivity is generally considered to be a distinguishing 
characteristic of social networks with respect to other systems. On the other hand, the 
calculated values for diameter and average path length seem to be in line with those of other 
real social systems and sensibly smaller than those exhibited by a random network, indicating 
a certain level of compactness of the Elban network, at least for its central connected core. 
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This is also confirmed by the proximity ratio which indicates a good level of ‘small-
worldness’ of the network. 

The modularity of the network was calculated (Table 2) by dividing its actors with respect to 
the type of business (hospitality, associations, food and beverage services etc.) and 
geographical location (Elba’s municipalities). As a comparison, the modularity was 
investigated by using the algorithm by Clauset et al. (2004) which partitions the network on 
the basis of its connectivity characteristics, without supposing any division in advance (CNM 
in Table 2).  

Table 2 Elba network modularity analysis 

Grouping No. of groups Modularity Average Modularity 
Geography 9 0.047 0.0052 
Type 8 -0.255 -0.0319 
CNM 11 0.396 0.0360 
CNM (random) 23 0.606 0.0263 

 

Table 2 shows the number of clusters identified (groups) and the modularity index. The last 
row reports the values calculated (CNM) for a network of the same order as the Elba network 
with a random distribution of links (values are averages over 10 iterations). To better compare 
the different results, the last column of the table contains the average modularity over the 
groups (modularity/number of groups). All groups have a very low modularity. In one case 
(grouping by type), the negative value indicates that the actors tend to have more connections 
outside the group to which they belong than with businesses within the group. The higher 
values found by the CNM algorithm confirm that division by geography or by type of 
business does not imply any strong of clusterisation in these groups. In other words no well 
definite business-type or geographical groupings can be found in the destination. The values 
obtained for the random network are a further confirmation of the very low degree of 
modularity of the Elba network. 

The topological analogy: an example (real and virtual) 

As a further example of the outcomes of the application of network science to a system such 
as the Elban tourism network, let us consider the virtual network among Elban tourism 
companies. The websites belonging to the tourism stakeholders were identified (only ‘full’ 
websites, with their own address were considered, discarding sets of pages embedded in the 
portals of other organizations) and the network (WN) was built by listing all the hyperlinks 
among them. This was accomplished by using a simple crawler and complementing the data 
obtained with a ‘manual’ count of the hyperlinks to overcome the limitations of the program 
used (such as, for example, the impossibility of finding hyperlinks embedded in Flash 
applications or Java applets) (Baggio, 2007). Table 3 shows the topological characteristics of 
the WN network compared with those of the ‘real’ network (TN) described in the previous 
section. 

As can be seen, apart from scale factors, most of the values have differences which are lower 
than an order of magnitude. Since in a complex network the distributions of these metrics are 
not normal, a simple comparison of their averages (arithmetic means) is an insufficient way of 
establishing similarities or dissimilarities. In these cases, as already proposed by some 
researchers (Clauset et al., 2007; Leskovec & Faloutsos, 2006), the Kolmogorov-Smirnov 
(KS) statistic is considered able to provide trustworthy results. The KS D-statistic gives the 
maximum distance between the cumulative probability distributions of empirical data F(x) 
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and G(x) over the entire x range: )()(max xGxFD x −= . The statistic is nonparametric and 
as it is insensitive to scaling issues, it compares only the shapes of the empirical distributions 
(Siegel & Castellan, 1988). 

 
Table 3 Topological characteristics of the real (TN) and the virtual (WN) Elban networks 

Metric TN WN 
Number of nodes 1028 468 
Number of edges 1642 495 
Density 0.003 0.005 
Disconnected nodes 37% 21% 
Diameter 8 10 
Average path length 3.16 3.70 
Clustering coefficient 0.050 0.014 
Degree distribution exponent 2.32 2.17 
Proximity ratio 34.10 12.21 
Average degree 3.19 2.12 
Global efficiency 0.131 0.170 
Local efficiency 0.062 0.015 
Assortativity coefficient -0.164 -0.167 

 

The values for the D-statistics calculated when comparing the distributions of the Web 
network with those of the real network are the following: degree = 0.119; clustering 
coefficient = 0.147; local efficiency = 0.125. For comparison, the same values have been 
calculated for a random sample (RN) of the same size as WN, extracted from the real one. 
The values (averages over 10 realizations) are: degree = 0.147; clustering coefficient = 0.178; 
local efficiency = 0.184. The consistently lower values of the D-statistic in the case of the web 
network (with respect to the random sample) can be considered a good confirmation of the 
likeness of their structural characteristics. 

A strand of literature considers virtual networks as representations of the social relationships 
among the actors originating them. In essence: “computer networks are inherently social 
networks, linking people, organizations, and knowledge” (Wellman, 2001: 2031). Even if 
some argue that that the links are created in a rather unpredictable way, and it is not possible 
to find unambiguous meanings (Thelwall, 2006), private or public organizations and 
companies consider an hyperlink as a strategic resource, and the structure of this network is 
created by specific communicative aims, rather than by accidental choices (Park & Thelwall, 
2003; Vaughan et al., 2006). 

Based on these considerations and the network analysis, it is possible to formulate the 
following conjecture: the network of websites belonging to a cluster of (tourism) companies is 
a reliable sample of the whole socio-economic network formed by them. The obvious 
limitation is that the area taken into account must show a significant diffusion of the Internet 
and the Web. Yet nowadays this, for a large part of the World, is not a severe limitation. 

Rather than more or less ‘randomly’ sampling a socio-economic network with the usual 
investigation methods (Marsden, 1990), the Web provides us with a relatively fast, easy and 
objective way of sketching the main characteristics of such networks. The literature has 
produced much evidence on the issue of network sampling and the effect it might have on the 
topological characteristics of the whole network (Kossinets, 2006; Lee et al., 2006). This must 
be taken into account in deriving the insights that network analysis methods can provide. 
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Dynamic processes 

Through their mathematical representation, networked systems are excellent candidates for 
numerical simulations. Indeed simulation is receiving increased attention as a powerful 
method to support complex analysis and planning activities for social and economic systems. 
Information and knowledge flows in a destination are important factors for the general ‘well-
being’ of the system. and the manner in which the diffusion unfolds influences the 
competitive advantage of individual actors and their planning of future actions. Productivity, 
innovation and economic growth, in fact, are strongly influenced by these processes, and the 
way in which the spread occurs can determine the speed by which individual actors perform 
and plan their future actions at the destination. In other words the structure of the network will 
be influential in determining the efficiency of the destination’s attempts to share knowledge 
and innovate (Argote & Ingram, 2000).  

A computer simulation can help assess the efficiency of information flows across the 
destination and testing the capability of the system to react to some changes of its structural 
parameters. A simple epidemiological model can be employed. In this, nodes are either 
‘susceptible’ to receiving information or already ‘infected’ by it (i.e. they have received it). 
Despite its simplicity, this model is a reliable approximation (see for example Barthélemy et 
al., 2005; Xu et al., 2007), and quite suitable to describe a knowledge transfer process. The 
simulation was conducted as follows: within a network, one randomly chosen stakeholder 
starts the spread by infecting a fraction ki of its immediate neighbors. At each subsequent time 
step, each infected element does the same until all the network nodes have been infected and 
the process ends. In this study the model was run by adopting two different configurations. In 
the first case, the capacity of a stakeholder to transfer knowledge (spread infection) is used as 
a parameter for the model. It is defined as a probability p(ki) which determines the number of 
neighbors infected by a single actor. This justifies an important difference between the 
diffusion of information and knowledge and the spread of viruses. Viruses are indiscriminate, 
infecting any susceptible individual. Knowledge, on the other hand, is transferred only to a 
limited set of the individuals with which an actor has interactions (Huberman & Adamic, 
2004). 

Particular actors, then, can have different ‘absorptive capacities’ (Cohen & Levinthal, 1990; 
Priestley & Samaddar, 2007), i.e. different capabilities to acquire and retain the knowledge 
available to them due to the associated costs or their internal functioning, and to transfer it to 
other actors. In tourism, this issue is crucial for the high prevalence of small businesses that 
typically rely on external contacts for information. In the reasonable assumption that p(ki) 
depends on the size of the stakeholder, the network nodes were divided into three classes: 
large, medium and small (in our case we have the following proportions: large = 8%, medium 
= 17%, small = 75%). The values for p(ki) used in the simulations run are (arbitrarily) set as: 
p(klarge) = 1, p(kmedium) = 0.8, and p(ksmall) = 0.6.  

The second type of simulation aims at testing the influence of a network’s structure, and 
particularly how the cohesion among stakeholders can affect the knowledge transfer process. 
In this case the experiment was performed with a modified version of the original network 
obtained by rewiring the connections while leaving unchanged the original connectivity (i.e. 
the number of immediate neighbors of each stakeholder and overall density of linkages), in 
order to obtain a higher clustering coefficient and a higher efficiency. The algorithm used is 
similar to the one proposed by Maslov and Sneppen (2002). The new network has a clustering 
coefficient C = 0.274 and a mean local efficiency Eloc = 0.334, as opposed to the original one 
whose values are C = 0.084 and Eloc = 0.104 (only the fully connected component of the Elba 
network was used, i.e. all isolated nodes were removed). As a comparison, a random network 
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(same order and density, and random distribution of edges) was used. The time of peak 
diffusion, which can be used as an indicator of the process efficiency, decreases by 16% when 
comparing the random network with the Elba network containing different actors’ 
capabilities. This, as expected, is due to the non-homogeneity of the network. When changing 
to equal capabilities (the original Elba network) a 22% reduction in the time of peak diffusion 
is found. A further consistent decrease (52%) is found when the local densities (clustering) are 
increased. Figure 8 shows the cumulative number (as a percentage of total) of stakeholders 
that are ‘infected’ as function of time for the different simulations preformed. 

 
Figure 8 Cumulative percentage of informed stakeholders for the simulations performed: 
rewired network (RW), Elba network with equal probability of transmission (EN), with 
probabilities scaled according to stakeholder size (EDiff) and a network of same size with 
a random distribution of links (Rnd). Curves are averaged over 10 realizations of the 
simulations. 

 

The interventions made therefore have a significant impact on the information diffusion 
process. In other words: the spread of knowledge is faster if the network’s connections are not 
distributed at random (scale-free in our case), it improves if all the stakeholders have equal 
absorptive capacities (the maximum) and is even more enhanced when the extent of formation 
of local groupings (collaborative communities) increases. 

Discussion 

The Elba tourism destination network has been characterized as a complex network whose 
main traits are common to many other natural and artificial systems. Its scale-freeness has 
been assessed. Despite this similarity, the structure differs from those exhibited by other 
complex systems mainly in its high sparseness and a very low degree of local clustering. In 
‘tourism’ terms this means that the local stakeholders exhibit a very low degree of 
collaboration or cooperation. A quantitative measurement for this feature is naturally derived 
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from the metrics used for the network analysis. In particular, as argued elsewhere (Baggio, 
2007), the clustering coefficient (very low in this case) can be used as a measure of the extent 
of the degree of collaboration and the assortativity coefficient (very low and negative) can be 
thought of as representing the tendency to form such collaborative groups. The qualitative 
knowledge of the destination (Pechlaner et al., 2003; Tallinucci & Testa, 2006) and the data 
gathered during the interviews conducted at the destination substantiate the interpretation 
given. This apparent lack of collaboration among operators belonging to the same type has 
proved to be detrimental when thinking about the capacity of innovation which might help 
them face the challenges of the contemporary highly competitive and globalized market. It 
has been shown, in fact, that a collaborative approach and intense exchanges, even in 
seemingly competitive organizations such as the group of Sydney hotels described by Ingram 
and Roberts (2000), may allow a valuable amalgamation of best practices, with the result of 
improving the performance and profitability of the whole group and its members. The low 
level of modularity unveiled further confirms this reading. It is interesting to note, in the 
results of the analysis, that the highest modularity value is obtained with the usage of a 
‘generic’ numeric algorithm (Clauset et al., 2004). This community structure, in the common 
understanding of the phenomenon (Arenas et al., 2004), can be considered better than those 
which can be found based on the other criteria used: type of business and geographical 
location within the destination.  

Moreover both the number and the composition of the clusters identified are different (Table 
2). The system, in other words, exhibits self-organization properties which lead to the 
formation, to some extent, of an agglomeration of ties and produces a number of informal 
communities and an informal community structure. It can be concluded that the information 
contained in the geographical or business typology data does not fully represent the 
communality characteristics, and the modularity solutions found in this way are non optimal. 
This evidence has been also found in other social networks (Minerba et al., 2008). 

From a destination management viewpoint, this result is important. It can provide indications 
on how to optimize some performance, for example, optimal communication pathways or 
even productivity in collaborations, overcoming rigid traditional subdivisions. It can provide a 
more practical tool to go along with the ideas and practices of an adaptive approach to the 
management of a tourism destination which has been advocated by some scholars (Farrell & 
Twining-Ward, 2004). 

A word of caution is necessary when considering extending the considerations made on 
network clustering and modularity to other cases. It has been shown, for example, that 
significant values for the clustering coefficient can be also be accounted for by a simple 
random graph model (i.e. in which edges are placed at random), under the constraint of a 
fixed degree distribution P(k). The emergence of this effect is a ‘statistical fluctuation’ due to 
the form of the degree distribution in networks with a finite number of elements (Newman, 
2003a; Newman et al., 2001). A correct interpretation of the result, therefore, can only be 
achieved by complementing the quantitative assessment with a deep knowledge of the social 
system under study, which typically comes from a tradition of qualitative investigations. 

The worth of the methods presented here is well demonstrated by looking at the comparison 
made between the real and the virtual networks of the Elban tourism stakeholders. Even with 
the limitations discussed previously, it has been possible to formulate a conjecture – the 
similarity between the topologies of the two networks – which can prove extremely useful in 
speeding up and easing the process of collecting data to perform network analyses for socio-
economic systems such as tourism destinations.  
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The information diffusion process analyzed provides us with some more important results. 
The simulated measurements of the diffusion speed confirm, first of all, the improvement in 
the efficiency of the whole process due to the existence of a structured network in place of a 
randomly linked system. Two conceptually different situations were simulated. The first one 
considered the stakeholders of the destination as elements with different capabilities to 
acquire and consequently retransmit information or knowledge. The second one assessed the 
effects of a change in the topology of the network obtained by optimizing it with respect to its 
efficiency. The results show a clear improvement in diffusion speed when all the actors are 
considered to have the same capacity to transfer information or knowledge. This is an 
important indication for a destination manager. Putting in place measures and actions aimed at 
reducing the differences in the absorptive capacities of the destination stakeholders can have a 
highly beneficial impact on the overall system. However, the results indicate that a similar 
effect, but with an even higher magnitude, can be obtained by optimizing the network 
efficiency. The exchange of information among the nodes is much improved if the 
connectivity of the network is modified so as to increase the local efficiency, and 
consequently the clustering coefficient. 

In other words, a very important determinant for the spread of knowledge in a socio-economic 
system such as a tourism destination is the presence of a structured topology in the network of 
relations that connect the different stakeholders, and more than that, the existence of a well-
identified degree of local cohesion. This supports the notion that destination stakeholders 
should be encouraged to form clusters and to both compete and cooperate in order to 
exchange knowledge and hence to raise the overall competitiveness of the destination. 
Quantitative network methods can, therefore, not only assess this effect, but, more 
importantly, give practical indications on how to improve the process. By performing 
different simulations with different sets of initial parameters (distribution of absorptive 
capacities or different levels of clustering), it is possible to obtain different settings and 
evaluate the effects of the choice of parameters on the final result. 

Conclusion 

This paper has described the methods and the techniques that network science has assembled 
so far for the study of complex adaptive systems and as an example of their application, the 
case of a tourism destination has been discussed along with some implications this approach. 

Taken alone, network analysis methods are undoubtedly an intriguing and intellectually 
stimulating exercise. Physicists know, however, that no matter how sophisticated and 
effective theoretical techniques can be, they have little value if applied to a phenomenon 
without coupling them with sound ‘physical interpretations’. Translated into the language of 
social science this means that a thorough knowledge of the object of analysis is crucial to 
obtain meaningful outcomes both from a theoretical and a practical point of view. This 
knowledge is the one provided by qualitative methods. As Gummesson points out: “by 
abolishing the unfortunate categories of qualitative/quantitative and natural sciences/social 
sciences that have been set against each other, and letting them join forces for a common goal 
– to learn about life – people open up for methodological creativity” (2007: 226), therefore 
“qualitative and quantitative, natural and social are not in conflict but they should be treated 
in symbiosis” (2007: 246). 

In the twenty first century, the strong focus on issues such as partnership, collaboration, 
cooperation and the benefits of the tools available for the investigation of the relationships 
between the elements of a socio-economic system have been discussed several times in the 
area of general management studies. The implications, it is argued, go well beyond the simple 



Dondena Working Paper No. 7  Network science and socio-economic systems 

 26

study of networks. These methods are recognized to have a strong potential to inform a wide 
number of concerns such as the use of technology, the study of epidemiological diffusion 
(from diseases to marketing or policy messages), the formation of consensual opinions and 
the impacts of these on organizational structure and performance (Parkhe et al., 2006). 

In this respect, the methods of network science can prove highly beneficial in deepening the 
knowledge of the whole system and, coupled with more traditional procedures, can provide 
powerful tools to enable those adaptive management practices considered by many the only 
practical way to steer the collective efforts of multiple organizations (Bankes, 1993; Farrell & 
Twining-Ward, 2004; Holling, 1978; Ritter et al., 2004). 

The possibility of using quantitative techniques to analyze the relationships between tourism 
operators opens new paths for the researcher interested in the structure, the evolution, 
outcomes, effectiveness and the governance of the system. This work, therefore, strongly 
supports the idea that triangulation of research methods can give the clues necessary to 
improve the analysis of tourism systems and their components (Davies, 2003). Further 
research in this area will first need to confirm the results obtained so far by increasing the 
number of examples studied. The methods employed in this paper clearly require some 
additional refinement both from a practical and a theoretical point of view. Moreover, the ever 
growing number of studies in network science, mainly from what concerns the dynamic 
evolution of a complex networked system, may suggest new models and new approaches 
which will need careful consideration for the applicability to the tourism field. As a final 
point, it is a firm conviction of the authors that a more rigorous establishment and adoption of 
methodological tools such as those used in this work, can be a powerful way to help tourism 
research transition towards a less undisciplined array of theories and models (Echtner & 
Jamal, 1997; Tribe, 1997). 
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