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Abstract 

The purpose of this methodological paper is to explore one issue in the analysis of complex 

networks when weights are used to value edges. Often these weights are removed by setting a 

threshold and considering the links existing only if their value is higher than this. This practice 

allows then using simpler metrics as provided by many software packages. However, many 

common network properties, which often lead to specific interpretations, can be highly sensitive to 

the assumptions and thresholds used. By discussing a case, we show the differences that arise when 

dichotomizing a weighted network. We conclude that while unweighted networks can provide 

insights into some structural properties, the operation can be unnecessary and even detrimental for 

studying many features and processes when valued relational data are available.  
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1 Introduction 

The view of tourism as a complex phenomenon which embraces complex socio-economic systems  

is today well accepted and used for studying several characteristics of the domain, mainly for what 

concerns the status and the evolution of the systems that belong to the domain  (Baggio, 2008; Noh, 

2009; Speakman & Díaz Garay, 2016; Zahra & Ryan, 2005).  



Among the many methodological approaches for the study of the complexity of many natural and 

artificial systems, network analysis has proved to be especially suitable, mainly when socio-

economic phenomena are involved. The methods for analysing a network have seen an incredible 

development in the last decade. The basic idea is that any system, from the simplest to the most 

complex, can be modelled as a network in which the different elements are connected by some kind 

of link. Network analysis has proven to be a powerful and soundly based way for the assessing the 

structure and the dynamic behaviour of such systems and has provided tools for better studying and 

simulating many processes unfolding on and in a network (Barabási, 2016; Cimini et al., 2018). 

Practically all disciplines have been impacted and tourism is no exception (Baggio, 2017; 

Casanueva et al., 2016; van der Zee & Vanneste, 2015). Apart from studies concerning the 

structural characteristics of a system, different types of networked assemblies have been used to 

explore other topics such as the propensity to favour creativity and innovation (Baggio, 2014) or the 

evaluation of a destination’s performance  (Stienmetz & Fesenmaier, 2013), or the resilience to 

possible climate changes (Luthe & Wyss, 2016). 

 

In this work we deal with one specific issue: dichotomization. When a network is weighted (i.e. its 

links are assigned a value, see the next section for a discussion), one way to use existing techniques 

and tools for calculating the measurements that are needed or desired is to scale it down and assume 

that a link exists only if its value is higher than a certain threshold. This allows to obtain a simple 

binary graph (where a link  has value = 1 if it exists, 0 if not) and use one of the many software 

applications that handle these objects. However, as it is easily understandable, in this way much 

information is lost. The major problem is that that there is no accurate way for defining the 

threshold, but its value is left to the sensibility and the experience of the researcher about the object 

under investigation. The resulting networks, however, can be greatly different in structure form the 

original  (Thomas & Blitzstein, 2017), and the situation can be even worse if individual actors’ 

centralities are concerned (Eisenkraft, 2017).  

In other words, even using “rigorous” methodologies (provided they exist), there is a high risk of 

having warped perceptions of the importance of certain elements (local or global) in the network 

and substantial losses of efficacy may arise when examining dynamic processes such as information 

and knowledge sharing or opinion formation. 

The rest of this paper is organized as follows. After a short summary of the basics of network 

analysis, weighted measurements are discussed. A worked example, then, shows the differences 

obtained using different thresholds for the dichotomization of a network. 



2 Networks and weighted networks: the main metrics 

A network is an abstraction used to model a system. The basic components are nodes (also called 

vertices) and links (edges) connecting them. Both components can be used as simple items or be 

assigned some value (weight) that renders some specific characteristic such as size, value, cost, 

length and so on; in this case we speak of weighted networks.  

Most investigations on networks (and processes on these networks) have focused on binary ties (i.e. 

simply existing or not). For these a wide variety of metrics have been proposed that render the basic 

structural and dynamic properties at global, intermediate or individual level (Barabási, 2016; da 

Fontoura Costa et al., 2007). Among these, well known measures are:  

 degree: the number of connections each node of the network has to other nodes; 

 density: number of actual connections between a set of nodes compared to the number of 

links if nodes were fully connected; 

 assortativity: the correlation between nodal degrees; 

 average path length: the average distance (shortest path) between any two nodes and 

diameter, the maximal path length in the network; for reducing the effects of outliers an 

more robust metric, the effective diameter, can be calculated as the 90th percentile of all 

distances; 

 clustering coefficient: the degree of non-homogeneity in the density of links; 

 closeness: the capability of a node to “reach” any other node in the network; 

 betweenness: the measure of the extent to which a vertex lies on the paths between others, 

thus acting as a bridge (or a bottleneck) between different parts of the network; 

 efficiency: a measurement of the ease with which information flows; 

 modularity: the extent of division in denser sub-networks, also called communities. 

When the quantities refer to a single element (node) and are subject to some normalization 

(typically on the network’s size) the term centrality is commonly employed. 

For many of these measurements interesting and used quantities are the means and the forms of 

their statistical distribution or other measures that render the distribution of the values. For the 

degrees, for example, apart from the their distribution, the Gini index provides an immediate 

assessment of the heterogeneity of their values (Hu & Wang, 2008).  

Little work has considered so far the addition of weights to nodes (among the few examples is 

Wiedermann et al., 2013), while the practice of weighting the connections existing between nodes is 



relatively common mainly when the characteristics of social and economic systems (like a tourism 

destination, for example) are at play. Nonetheless, the literature has provided also, at least for the 

most important metrics, a “weighted” version, that takes into account the values assigned to the 

links (Barthélemy et al., 2005; Newman, 2004; Opsahl et al., 2010). 

 

The outcomes from an analysis can be greatly different when weights are taken into account. It is 

relatively easy to see how the valuation of links can alter many of these measurements with respect 

to the unweighted measure. A simple example is shown in figure 1. 

Let us suppose that the weights shown on panel B represent costs. The node with the highest degree 

k in A is B (k=4), while in network B is E since the total weight of the links kw = 2 (for B kw=1.4). If 

then we consider the shortest path l between B and C we have l=1 for the direct connection B-C 

(binary network A) and l=0.4 for the path B-A-C (weighted network B). 

 

Figure 1 A binary network (A) and a weighted version of the same network (B) 

In many cases the extension of a metric to a weighted version is trivial, in some cases it is more 

complicated or has not been “solved” yet (for example no good definition of weighted density still 

exists). The details of the formulas are skipped here for easing the readability of this paper, 

interested readers can find all details in the vast literature on the subject (Barabási, 2016; Barrat et 

al., 2004; Barthélemy et al., 2005; Newman, 2004, 2010; Opsahl et al., 2010). 

Often, however, when examining a network with valued edges, researchers rely on some 

extemporary method to produce a binary replacement. The most common method is to dichotomize 

the values by choosing a threshold value, and assuming a link to exist if the threshold is exceeded. 

Examples of this practice exist in many domains, tourism included (for the latter a few recent 

examples are: Langle-Flores et al., 2017; Liu et al., 2017; Wäsche, 2015). 



The fact that almost all the most used software packages available (such as UCINET or Pajek) do 

not handle, or handle only partially, weights is a possible cause for this diffused practice. For a 

correct treatment of all the aspects of a weighted network, however, one needs to resort to one of 

the commonly used  software development environments (Matlab, Python, R etc.) that offer a wide 

range of libraries all including a wide variety of features.  

3 An example: dichotomizing a weighted network. 

In order to better understand the problems that can be found in dichotomizing a weighted network, 

let us discuss the following example. Data used are from the UK Department for Transport 

(https://roadtraffic.dft.gov.uk/) and refer to the Region of London. Data represent traffic figures 

(annual average daily flow in vehicles per day) for each junction to junction link on the major road 

network (the year considered is 2014). The main characteristics of the resulting network are shown 

in table 1. Here we report the metrics calculated for the weighted network and for its unweighted 

version. This comparison is frequently an initial step that allows a coarse but important assessment 

of the global topology of the network and the influence of the weights (Baggio et al., 2011; Estrada 

& Bodin, 2008). 

Table 1. Basic characteristics of the network 

   Weighted  Unweighted 

Node count:  788 788 

Link count:  1294 1294 

Density:  ‐‐‐ 0.004 

Giant connected component:  100% 100% 

Diameter:              521 043 16 

Effective diameter (90%)              359 307.7  5.3 

Ave path length:              107 499.7  3.95 

Clustering coefficient:  0.015 0.123 

Global efficiency:  0.000 0.287 

Ave local efficiency:  0.000 0.143 

Assortativity:  ‐0.117 ‐0.127 

Modularity:  0.587 0.649 

Gini index degrees:  0.649 0.518 

Degree distribution exponent :  3.31±0.32 2.2±0.05 

 

The degree distributions, as for many other networks, follow a power law N(k)k- . This is 

considered to be a signature of the complexity of the system and to provide some hints on the 

possible formation mechanism of the network (Barabási, 2016; Cimini et al., 2018). 



From the table it is possible to see how certain quantities are affected by the weighting scheme. In 

particular the heterogeneity (Gini coefficient and the exponent of the degree distributions), the 

clustering coefficient, the assortativity, and the efficiencies. All these are normalized quantities, so 

the comparison is easy. 

As a second step we generate different binary versions of the network using three different 

thresholds and selecting: the top 75% weights (N75), the top 50% (N50) and the top 25% (N25). 

The networks are shown in figure 2 (for the full network ALL, the unweighted version is depicted). 

Table 2 shows the metrics for all networks (the full network the unweighted version). 

 

Figure 2. The four networks examined 

Table 2. Metrics for the binary networks 

   ALL  N75  N50  N25 

Node count:  788 760 622  440 

Link count:  1294 1235 879  548 

Density:  0.004 0.004 0.005  0.006 

Giant connected component:  100% 98% 92%  90% 

No. of components  1 7 22  21 

Diameter:  16 14 11  11 



Effective diameter (90%)  5.3 5.2 5.2  4.9 

Ave path length:  3.95 3.89 3.85  3.67 

Clustering coefficient:  0.123 0.126 0.105  0.107 

Global efficiency:  0.287 0.251 0.250  0.280 

Ave local efficiency:  0.143 0.117 0.120  0.146 

Assortativity:  ‐0.127 ‐0.130 ‐0.148  ‐0.181 

Modularity:  0.649 0.647 0.644  0.670 

No. of communities  21 17 27  21 

Gini index degrees:  0.518 0.514 0.489  0.463 

Degree distribution exponent:  2.20±0.05 4.10±0.63 3.71±0.48  4.50±0.52 

 

Even a simple look at the picture shows quite dissimilar objects. However, it is only measuring the 

main quantities that we can really assess the differences. As it could have been expected, the 

dichotomized networks show a decreased heterogeneity (Gini index) in the degrees and a tendency 

to become fragmented (but as the degree distribution exponents show an increase “hubization”). 

This can affect quite severely the interpretation of the outcomes in a specific context. Apart from 

these global alterations, also the individual measurements tell different stories. Table 3 reports the 

rankings (top 10 nodes) of the networks’ elements with respect to the most commonly used 

centralities. The node numeric ids have been kept constant across the different networks (i.e. a 

numeric label identifies the same node in all networks). 

Table 2. Ranking (top 10 nodes) for centrality metrics in the different networks. 

Rank
Degree  Clustering coefficient 

WEI  ALL  N75 N50 N25 WEI ALL  N75 N50 N25 

1 18  18  18 18 18 5 5 5 5 5 

2 1  23  23 23 1 403 31 31 31 31 

3 23  86  1 1 23 225 56 56 34 34 

4 148  1  86 85 184 766 79 79 42 42 

5 85  155  155 86 86 457 97 97 56 66 

6 6  96  96 155 50 133 100 100 58 74 

7 184  50  98 21 85 171 105 105 79 79 

8 30  93  184 98 21 337 133 133 100 114 

9 86  98  50 184 98 531 141 141 124 133 

10 50  184  93 93 6 377 146 146 133 134 

Rank
Closeness  Betweenness 

WEI  ALL  N75 N50 N25 WEI ALL  N75 N50 N25 

1 18  18  18 18 18 18 18 18 18 18 

2 438  23  85 85 23 155 50 158 1 1 

3 347  85  23 23 1 23 158 1 158 158 

4 83  155  155 86 50 86 1 23 23 23 

5 157  86  86 1 162 19 23 50 155 149 



6 498  60  60 21 184 81 101 101 50 50 

7 280  21  21 155 85 96 64 64 125 20 

8 301  1  1 139 109 71 86 155 181 30 

9 765  158  158 162 139 20 155 86 149 184 

10 374  64  50 50 86 158 60 20 101 17 

 

To summarize these measurements it is possible to use an “importance index” calculated as the 

geometric mean of all the basic (degree, clustering coefficient, betweenness and closeness) 

normalized metrics used (Sainaghi & Baggio, 2014). The rankings for the top 10 nodes are in table 

3. 

Table 3. Importance ranking for the networks 
 

Rank  WEI  ALL  N75  N50  N25 

1  18 18 18 18 18 

2  30 23 23 23 1 

3  23 86 155 86 23 

4  65 155 96 17 50 

5  50 21 86 21 86 

6  17 96 1 144 17 

7  1 1 21 98 389 

8  6 98 98 85 21 

9  86 50 85 1 30 

10  148 123 60 155 85 

  

The differences are evident. Mostly between the original weighted network (WEI) and the binary 

versions. A known and widely used measure for the agreement between different variables is the 

Kendall's coefficient of concordance W: a non-parametric statistic hat assesses agreement among 

ratings (W ranges from 0: no agreement to 1: complete agreement). In our case the test run over all 

the nodes that appear in all networks is W = 0.408 (with high significance: p<<10-5), thus 

confirming quantitatively the visual impression. That is to say that there is an very high probability 

(almost a certainty) of misinterpreting the many of the nodes’ positions in the network and mistake 

their “real” importance. This can be a big issue when analysing the  behaviour and the properties of 

actors in a social or socio-economic network, such as those commonly studied in the tourism 

domain, and interpreting the outcomes. 

Centrality metrics, moreover, do not only measure the “importance” of a node, but represent the 

expected values of certain kinds of node participation in network dynamic processes. As such they 

can have a deep influence on the unfolding of these processes (Barrat et al., 2008; Borgatti, 2005; 



Pastor-Satorras et al., 2015). The contribution of a node to the global behaviour is not only shaped 

by the structure of the system but stems from the interplay between dynamics and structure, and the 

value of the centrality measures are an important parameter controlling the extent and the duration 

of many dynamic processes (Malliaros et al., 2016; Restrepo et al., 2006).   

4 Concluding remarks 

A network is a useful and important abstract model for understanding the structural and dynamic 

characteristics of a complex adaptive system such as those that belong to the tourism domain. In 

many cases these networks, besides making visible the connections between the different actors, 

possess more detailed characteristics usually rendered as values assigned to the links. 

Their analysis is a bit more complicated and cannot always be conducted fully with standard 

software packages. In these cases researchers have often adopted a practice that consists of defining 

a threshold for the links’ values and dichotomize the network considering links existing only if their 

value is higher than the threshold. This may result, as also shown by the example presented, in an 

alteration of many metrics and of the relative importance of their components. 

Although a dichotomized unweighted (binary) network can provide interesting insights into some 

structural properties, this procedure can be unnecessary and even detrimental for studying many 

features and dynamic processes when valued relational data are available. This affects both the 

judgement on the global properties of the network and the centrality values for the nodes. 

Moreover, when dynamic processes are examined, the weights can greatly change the dynamics and 

result in quite different outcomes. 

Obviously not all networks behave in the same way, and not all situations lead to the same 

outcomes as those presented in this paper. Different results might be obtained depending on the 

values of the weights and on their distribution across the links. However, the issue should induce a 

serious warning and push researchers to verify carefully the possible variations that could arise in 

the measurements. 

Even if a dichotomization had a strong theoretical or methodological justification, the use of 

appropriate weighted techniques undoubtedly allow for more nuanced interpretations of the network 

characteristics. 
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