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That in which we mainly need to insist is on 
persuading our principals that this is a complete 
art, although just born, based on principles and 
means that are new, but noble and commendable, 
and needs to be embraced, cultivated and 
promoted, so that with exercise and time it will be 
possible to benefit from the fruits of which it has in 
itself the seeds and the roots. 
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Florence, 25 December 1617 
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Abstract 

The nature of development and evolution of a tourism destination has profound 

implications not only for public authorities, as an aid in control and planning, but also for 

all the destination stakeholders. A tourism destination is analysed here as a dynamic 

evolving complex system with the series of techniques and methods drawn from the area of 

network analysis. 

Recent research has shown that the topology of a network has predictable properties that 

may greatly affect the overall dynamic behaviour and explain and influence a number of 

processes from the diffusion of ideas to robustness to external attacks and the optimisation 

of the relationships among the network components. These analysis techniques can be 

considered a diagnostic method for collecting and analysing data about the patterns of 

relationships among people in groups or among organisations. They provide a view into 

the network of relationships that may give tourism organisation managers a strong leverage 

to improve the flow of information and to target opportunities where this flow may have 

the most impact on regulatory or business activities. 

The main objective of this thesis is to apply methods and techniques of so called ‘network 

science’ in order to study the evolution of the destination system and to simulate dynamic 

processes such as information and knowledge diffusion, and efficiency optimisation.  

The first part of the thesis concerns the theoretical background for this work. The most 

recent results of the investigations on network theories are reviewed. Both static and 

dynamic characteristics of a network and of the main processes which may occur 

(robustness with respect to external or internal shocks and diffusion of knowledge and 

information) are discussed. The models and the metrics presented have been chosen from 

the larger literature on the subject based upon their recognised importance for the 

assessment of the structural characteristics of a network, or because they are deemed 

particularly suited for the objectives of this study.  

The tourism destination is then discussed as a peculiar form of industrial district. Industrial 

economics are presented together with the main issues on the structure and the evolution of 

a cluster of firms. In this framework the characteristics of a tourism destination are 
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examined and the current ideas on its possible evolutionary growth are taken into account. 

These discussions set the composite and multidisciplinary theoretical framework for this 

thesis. 

A specific methodology for the study conducted is then presented. The methodology 

chapter contains the account of the reasons for the choice of the test case: the island of 

Elba, Italy. Furthermore it reports on the issues related to the collection of the data needed 

and their assessment from a completeness and reliability point of view. Two networks are 

built: the network of relationships between the tourism stakeholders and one of the 

hyperlinks among their websites. Specific algorithms and measurement techniques for the 

main static and dynamic characteristics of the destination network are detailed. 

The results of the study are then presented. They concern the measurement of the 

topological features of both networks (the real and the virtual) and the comparison between 

them. A simulation study then allows the robustness of the system and its responses to the 

process of diffusion of knowledge and information to be examined. The simulation also 

allows the influence of possible modifications in the network topology on these processes 

to be determined. A reconstruction of the past structure of the destination is finally used to 

compare network characteristics at different times. This comparison is employed to present 

a model of destination evolution based on its dynamic network topology. 

The last part of the thesis contains the discussion of the results. Their interpretation is 

presented first from a ‘network science’ viewpoint. The implications of this interpretation 

for the management of the destination are discussed by highlighting the contribution of this 

work for the scholarly study of the subject and by providing insights into the possible 

usage of the methodology by practitioners (destination managers or single stakeholders). 

 

Keywords: tourism destinations, economic and social integration, socio-economic 

systems, complex systems, network analysis. 
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Foreword 

The main motivation of the work described in the following pages may be traced back to 

my personal history. 

After having attended a classical high school, I graduated in physics with an experimental 

thesis on the detection of high energy cosmic rays in the atmosphere. For a couple of years 

I then worked at the Institute of Physics of the Milan University, researching in the fields 

of astrophysics and radio astronomy. After that, I spent almost twenty years working in the 

Information Technology industry dealing with both technical and organisational aspects of 

information science. 

A few years ago I started collaboration with Bocconi University, teaching on technological 

topics. In this position I happened to meet Magda Antonioli Corigliano and her staff: the 

group responsible for the Master in Economics and Tourism. There, besides teaching, I 

conducted a number of research projects on the relationships between tourism and 

information and communication technologies (ICT). 

My approach to the study of the various subjects I have dealt with has always been 

strongly influenced by my background and by the idea that a mixture of different 

disciplines and different experiences can greatly help in understanding a phenomenon, 

whatever the field of study is. 

In my early university years I had the luck and the honour to meet Ludovico Geymonat, 

probably the greatest living Italian philosopher of science. We had only a few occasions to 

discuss ideas but I still remember his words. In his monumental Storia del pensiero 

filosofico e scientifico (History of Philosophical and Scientific Thought, 1972) he writes 

(vol. 6, p. 1042): 

… one of the most serious crises of modern culture is, without doubt, connected to the 

affirmation of the specialist spirit in almost every scientific discipline: and not only – it is worth 

noting – in those of the sciences specifically called as such (mathematics, physics, biology etc.) 

but also in research fields such as history, philology, economy and so forth.  
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and, a little further on in the same book, speaking of methodology as a first step to 

overcome excessive specialism (pp. 1045-1046): 

[…] recently, the same scientists have started to realize the negative effects of pure specialism. 

One of the factors that has mostly contributed to this awareness has been, without doubt, a 

renewed interest in the methodological problems. […] One more important effect of the 

methodological reflection has been the stimulus impressed on comparing the structures of the 

different sciences discussing the legitimacy of reducing a theory (secondary) to another one 

(thought primary), or also only of using the results attained in one of them outside the field in 

which they had been demonstrated; to specify scrupulously analogies and differences – 

sometimes well hidden – of the principles produced in support of single theories; to evaluate the 

meaning of generalisations etc. 

Since then, I have always thought that the efforts of the scientific community towards 

better and more effective methods of analysis cannot be those of isolated and 

overspecialised groups of researchers, but that the collaboration of different, and even 

conflicting, knowledge realms is the only viable way to achieve important results. 

Some years ago, I stumbled, serendipitously, upon a set of papers in which ‘familiar’ 

methods were applied to the study of complex networks and upon a strange new discipline 

named econophysics (Mantegna & Stanley, 2000) and I decided to go into more depth in 

this subject. Working in a Master in Tourism program, it was natural to think of applying 

these methods to this field of study. 

One more fortuitous, and lucky, encounter with Chris Cooper, then Head of the School of 

Tourism at The University of Queensland, gave me the opportunity of embarking on the 

adventure of a PhD. Our common interest in the structure of a tourism destination and the 

relationships among its stakeholders led, almost naturally, to this work.  

This thesis may look a little perplexing to many readers. 

Typically, many PhD researchers (and dissertations) in social sciences, economics and 

tourism start with some clear questions and a definite theoretical framework and propose 

reconsiderations, improvements or empirical trials to endorse it (or to invalidate it). This 

thesis is different from the ‘usual’ and may, at first sight, confuse the reader with a strong 
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background in these social science disciplines. But this work did not start with a firmly set 

framework. It started, rather, with the idea of applying a number of methods and 

techniques from different fields (mathematics, graph theory, physics, economics etc.) to 

one object of study (a tourism destination) and trying to find a way to use these to improve 

our ability to describe a destination and to have better means to follow its evolution. 

So, as in many other disciplines, and mainly in physics, my main objective was to build a 

theory, or better (more modestly) a valid methodological path and to verify whether the 

results obtained are meaningful. 

The basis on which I moved was to use the analogy of a complex network for a tourism 

destination and to apply to the latter the considerations and the models that are used with 

the former. This may look like a disputable way of proceeding, but shares a long tradition 

in the physical sciences. Faraday, Coulomb, Helmoltz, Maxwell, Boltzmann, just to name a 

few examples, moved along this path. An initial analogy served them as an aid in the 

development of their ideas. 

The reader will judge the final result. I can only hope that my small contribution is of some 

help in drawing better and more useful pictures of the phenomena studied. 

As a final remark, as a scientist, I obviously know that this is only a first step in a long and 

problematic route and that everything contained in these pages can be upset by different or 

newer empirical evidence. Therefore, I present my results as a working hypothesis. 

 

Neque quisquam, quod ad hypotheses attinet, quicquam certi ab astronomia expectet, 

cum ipsa nihil tale praestare queat, ne si in alium usum conficta pro veris arripiat, 

stultior ab hac disciplina discedat quam accesserit. Vale. 

Nicolaus Copernicus, De Revolutionibus Orbium Caelestium, 1543 
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Network Analysis and Tourism: From Theory to Practice. 
Scott, N., Cooper, C., & Baggio, R. (2008), Clevedon, UK: Channel View.  

Abstract 
This book aims to provide a comprehensive review of the contribution of network analysis to 
the understanding of tourism destinations and organizations. Theoretical and methodological 
aspects are discussed along with a series of applications. While this is a relatively new approach 
in the tourism literature, in other social and natural sciences network analysis has a long 
tradition and has provided important insights for the knowledge of the structure and the 
dynamics of many complex systems. The study of network structures, both from a quantitative 
and qualitative point of view, can deliver a number of useful outcomes also for the analysis of 
tourism destinations and organizations. 
 

Knowledge Management and Transfer in Tourism: An Italian Case.  
Baggio, R., & Cooper, C. (2008), Proceedings of the IASK Advances in Tourism Research 2008 
(ATR2008), Aveiro, Portugal, 26-28 May, 44-53.

Abstract 
In the twenty first century tourism destinations have an imperative to innovate and remain 
competitive in an increasingly global competitive environment. A pre-requisite for innovation is 
the understanding of how destinations source, share and use knowledge. This chapter examines 
the nature of networks and how their analysis can shed light upon how destinations can share 
and benefit from knowledge as they strive to innovate and be competitive. The chapter outlines 
the notion of destinations as networks of connected organisations, both public and private 
sector. These organisations can be considered as stakeholders of the destination, and in network 
theory represent the nodes within the system. The chapter outlines the use of epidemic diffusion 
models and shows how they can act as a analogy for knowledge communication and transfer 
within a destination network. These mathematical models can be combined with other network 
analysis approaches to shed light on how destination networks operate, and how they can be 
optimised with policy intervention. The chapter closes with a practical tourism example taken 
from the Italian destination of Elba. Using simulations the case demonstrates how the Elba 
network can be optimised. Overall this chapter demonstrates the considerable utility of network 
analysis for tourism. 
 

Symptoms of complexity in a tourism system.  
Baggio, R. (2008). Tourism Analysis, 13(1), 1-20. 

Abstract 
Tourism destinations behave as dynamic evolving complex systems, encompassing numerous 
factors and activities which are interdependent and whose relationships might be highly 
nonlinear. Traditional research in this field has looked after a linear approach: variables and 
relationships are monitored in order to forecast future outcomes with simplified models and to 
derive implications for management organisations. The limitations of this approach have 
become apparent in many cases, and several authors claim for a new and different attitude. 
While complex systems ideas are amongst the most promising interdisciplinary research themes 
emerged in the last few decades, very little has been done so far in the field of tourism. This 
paper presents a brief overview of the complexity framework as a means to understand 
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structures, characteristics, relationships, and explores the implications and contributions of the 
complexity literature on tourism systems. The objective is to allow the reader to gain a deeper 
appreciation of this point of view. 
 

Destination Networks - Theory and practice in four Australian cases. 
Scott, N., Cooper, C., & Baggio, R. (2008). Annals of Tourism Research, 35(1), 169-188. 

Abstract 
Tourism involves a network of organizations interacting to produce a service. In this paper, 
network analysis is used to examine the structural properties of inter-organizational networks 
within tourism destinations. Network analysis is particularly useful as it adopts a whole of 
destination approach and imposes predefined groupings on the organization of tourism in a 
region. Information flows between key organizations provide the basis for analyzing a 
destination’s organizational structure and linkages, allowing identification of strategic 
weaknesses in the cohesiveness of the destination that can be addressed by policy and 
management approaches. The paper outlines four Australian destination case studies that 
demonstrate the utility of network analysis by illustrating structural features such as product 
clusters, structural divides and central organizations.  
 

What network analysis can reveal of tourism destinations [Poster]. 
Baggio, R. (2007). Presented at the Complex Networks: from Biology to Information 
Technology, Pula (CA, Italy) 2-6 July.

Abstract 
Tourism is probably the largest economic sector of the World’s economy, and a tourism 
destination is considered to be a fundamental unit of analysis for the understanding of this 
industry. This research examines two such systems, Fiji islands and the island of Elba (Italy), 
investigating their structural characteristics. Network theoretic metrics are used to gauge the 
static and dynamic attributes of the networks formed by the websites belonging to the different 
tourism operators. The general topology is found only partly similar to the one peculiar to many 
complex socio-economic systems. The differences appear due to the rather poor connectivity 
and clusterisation of the networks. The structural characteristics are then interpreted in terms of 
the evolutionary growth of a tourism destination. 
 

Tourism destinations: a network analysis of the Web space.  
Baggio, R., & Antonioli Corigliano, M. (2007). Proceedings of the Advances in Tourism 
Marketing Conference (ATMC), Valencia, Spain, 10-12 September.

Abstract 
Complex networks have been extensively studied in the last few years, and an interdisciplinary 
community of researchers have proposed and investigated a whole series of models with the 
objective of explaining the relationship between the structural characteristics of a network, its 
functions and its dynamic evolution. This paper aims at examining how network thinking can 
help in understanding the interactions between tourism stakeholders within a destination.  
Quantitative network analysis methods are used to compare the network characteristics of two 
tourism destinations: the Fiji Islands and Elba, Italy. The main structural characteristics are 
measured, both from a static and a dynamic point of view. The network characteristics are 
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compare with some distinctive features of the destinations and with possible evolutionary 
models. 
The results show that network topological measurements can be used to highlight the main 
features of the destination network and of the underlying social and economic system and can 
provide a way to assess their evolutionary history. 
The paper proposes an original quantitative approach to the study of tourism destinations and to 
the relationships between their stakeholders.  
 

Use of network analysis in tourism research.  
Scott, N., Cooper, C., & Baggio, R. (2007). Proceedings of the Advances in Tourism Marketing 
Conference (ATMC), Valencia, Spain, 10-12 September.

Abstract 
This paper discusses the status of the network concept in tourism, examining the historical 
development of network thinking in the wider literature and the origins of network thinking in 
sociology, anthropology as well as mathematics. It then examines the usefulness of the network 
concept for the study of tourism and reviews a number of different applications in tourism 
research reported in three tourism journals over a six year period. Based on this analysis and 
previous typologies of approaches to the study of networks, the paper develops a fourfold 
topology of types of network research in tourism. 
The paper reviews recent network research in tourism using a convenience sample of refereed 
journal articles from Current Issues in Tourism, Tourism Management and Annals of Tourism 
Research between 2000 and 2006 and categorises these on a fourfold typology. 
The paper highlights a number of research areas where the authors consider that further 
application of the network concept would be of benefit. These areas include application of 
complexity and chaos theory and the study of the tourists’ networks of friends and 
acquaintances that influence tourist behaviour.  
The review of the tourism literature is limited to three journals and a six year period. 
The paper develops an original typology of network studies in tourism and discusses complexity 
theory and the application of physical network concepts in social systems.  
 

The websites of a tourism destination: a network analysis.  
Baggio, R., Antonioli Corigliano, M., & Tallinucci, V. (2007). In M. Sigala, L. Mich & J. 
Murphy (Eds.), Information and Communication Technologies in Tourism 2007 - Proceedings 
of the International Conference in Ljubljana, Slovenia (pp. 279-288). Wien: Springer. 

Abstract 
How to reveal throughout a quantitative survey of the websites the cooperation development of 
a tourism destination? The analysis of the links among the tourist websites of a destination 
allows it. The website network of a tourism destination is examined and the main statistical 
characteristics of the underlying graph are calculated. The general topology of the network is 
similar to the one characterizing such systems. However, differences are found, mainly due to 
the relatively poor connectivity among the vertices of the network. These results are discussed 
and interpreted. Moreover, the usage of quantitative network parameters is shown to be able to 
measure the degree of collaboration and cooperation among the destination stakeholders and 
their tendency to act in such a way. 
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What network analysis of the WWW can tell us about the organisation of tourism 
destinations.  

Baggio, R., Scott, N., & Wang, Z. (2007). Proceedings of the CAUTHE 2007, Sydney, 
Australia, 11-14 February. 

Abstract 
This research examines the comparative characteristics of two tourism destinations based on 
quantitative analysis of the network of hyperlinks among their tourism operators’ websites. 
Methods and techniques of the ‘science of networks’ are used to characterise and compare the 
static and dynamic characteristics of a tourism destinations webspace. Network metrics are 
proposed as quantitative assessments of collaboration and cooperation among destination 
stakeholders. Using two cases, Fiji islands and the island of Elba (Italy), we show that the 
networks exhibit a topology similar to that characterising many complex social systems which 
have been studied and reported in the literature. The differences found of these tourism 
networks from other types appear due to the relatively poor connectivity among the elements of 
the networks. The structural characteristics are then interpreted in terms of the evolutionary 
growth of tourism destinations. 
 

Destination management plans: use of language as representation of power.  
Baggio, R., & Marzano, G. (2007). Proceedings of the CAUTHE 2007, Sydney, Australia, 11-14 
February. 

Abstract 
The analysis of discursive practices and language is critical to understand power relationships 
and power struggles. In particular, control over orders of discourse by institutional and societal 
power-holders is one factor in the maintenance of their power. This paper analyses how 
Tourism Queensland used political language and symbols to legitimate and generate support for 
its decisions. The destination management plans, developed for the 13 Queensland regions, 
were analysed using an automated content analysis software combined with quantitative 
network theoretic measurements. These methods prove to be effective in identifying the main 
concepts contained within the documents and their interrelationships. Results show that the core 
concepts of the destination management plans relate to the social impact that tourism has on 
communities as well as to the importance of the marketing and promotion of tourism. On the 
other hand, some concepts on which academics have focused, such as sustainability and 
collaboration, do not appear core elements in how Tourism Queensland prescribed tourism to be 
managed through its official discourse. 
 

The Web Graph of a Tourism System.  
Baggio, R. (2007). Physica A, 379(2), 727-734. 

Abstract 
The website network of a tourism destination is examined. Network theoretic metrics are used 
to gauge the static and dynamic characteristics of the webspace. The topology of the network is 
found partly similar to the one exhibited by similar systems. However, some differences are 
found, mainly due to the relatively poor connectivity and clusterisation of the network. These 
results are interpreted by considering the formation mechanisms and the connotation of the 
linkages between websites. Clustering and assortativity coefficients are proposed as quantitative 
estimations of the degree of collaboration and cooperation among destination stakeholders. 
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Complex systems, information technologies and tourism: a network point of view.  
Baggio, R. (2006). Information Technology and Tourism, 8(1), 15-29. 

Abstract 
There is a growing interest in complexity science as a framework for understanding social and 
economic systems. This paper aims at presenting this approach giving a brief overview of the 
complexity framework and illustrating some of the methods in order to allow the reader to gain 
a deeper appreciation of this perspective. The role of information management and information 
technology in tourism, emphasized on numerous occasions, is examined in this context. It is 
argued that this framework can offer tools and techniques able not only to better understand the 
general state from a theoretical point of view, but can also provide practical guidance in specific 
situations. As an example, the structure of the community of websites belonging to Italian travel 
agencies is analyzed.  
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1 Introduction 

The last 50 years have seen a growing interest in tourism and related topics by the 

academic world. Having developed into the most predominant sector in world’s economy, 

tourism could not have been ignored by the community of researchers. Explaining the 

phenomenon of tourism, its effects, its influence and relationships with other sectors of 

human activity, and attempts at forecasting future developments and behaviours have 

increased in importance with significant numbers of people involved in such research. 

The position of researchers in the tourism field is at times difficult. Practitioners of other 

disciplines charge them with being too soft, too application oriented and of not having been 

able (yet) to build up a rational and uniform theoretical framework (Hall & Butler, 1995). 

On the other hand, people involved in day by day operational activities accuse them of 

flying too high and wasting time in fooling around with models and conjectures without 

producing much of practical use in helping with the problems they face. As a very recent 

field of investigation, tourism is still trying to find a reasonable compromise between these 

two extremes (Farrell & Twining-Ward, 2004; Leiper, 2000b; Tribe, 1997).  

The boundaries of the tourism and travel industry are indefinite (Cohen, 1984; Cooper et 

al., 2005; McIntosh & Goeldner, 1990). Tourism brings together segments from a number 

of different activities with a wide variety of products and services exhibiting little 

homogeneity and with different technologies used in the production process. It may be 

questioned whether it should even be classified as an industry by itself in the traditional 

sense of manufacturing or trade (Leiper, 2000b; Mill & Morrison, 1992; Nordin, 2003). 

Moreover, reflecting changes in wider society, in the last few years tourism has become an 

extremely dynamic system. Introduction of flexible organisational structures, fast changing 

customer behaviour and strong impacts from the development of transportation 

technologies have exerted a formidable pressure on the whole sector. 

Many researchers have contributed and are contributing to the growth of knowledge in the 

tourism domain. They are bringing into the field their multiform and diverse experiences 

and backgrounds. Geographers, sociologists, economists, mathematicians, ecologists and 

historians, are all giving their interdisciplinary and multidisciplinary contributions and 
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trying to shape the paradigms (in the Kuhnian sense) that may raise the status of this area 

of study to an accepted scientific discipline (Echtner & Jamal, 1997; Farrell & Twining-

Ward, 2004; Faulkner & Russell, 1997; Leiper, 2000b; Tribe, 2005). 

In the vast catalogue of expertise that plays a role in this exploration, one was missing so 

far: physics. 

In recent years the ideas, concepts and techniques of physics have been applied to different 

disciplines such as biology, economics and sociology. The results of this interdisciplinary 

endeavour are interesting and have helped in improving the general understanding of these 

fields. In particular, in the study of economics, physicists are having an increasingly 

important role and a new ‘science’ has been born: econophysics (Mantegna & Stanley, 

2000). 

Central to this work is the idea that meaningful insights can be derived by considering 

social actors (individuals, groups of people, companies etc.) as ‘particles’ of a physical 

system and by studying their behaviour and the effects on the whole system under 

investigation. This idea is far from new. Since the 17th century many scholars have taken 

into account the statistical properties of the elements of an economic or a social system to 

build the theories and models that constitute our current understanding of these (Ball, 

2002, 2003). More recently, the usage of physical methods has provided important results 

such as the modelling of crowd behaviour (Helbing & Molnar, 1995; Henderson, 1971), 

traffic flows (Kerner & Rehborn, 1996; Nagel & Schreckenberg, 1992) or political 

elections (Bernardes et al., 2002; Costa Filho et al., 1999), the formation of business 

alliances (Axelrod et al., 1995; Castellano et al., 2000) and the behaviour of economic 

markets (Saari, 1995; Sornette, 2003). The application of the most recent developments in 

the field of complex systems modelling to social systems is also starting to receive 

‘institutional legitimacy’ (Henrickson & McKelvey, 2002). 

The characteristics of tourism make it a very difficult subject to define with reasonable 

accuracy. Terms such as complex, dynamic, networks, information intensive and others are 

very often used to describe the area (Baggio, 2006a; McKercher, 1999; Mill & Morrison, 

1992; Werthner & Klein, 1999), so that a characterisation of tourism as a complex dynamic 
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information network business is very likely to be generally accepted without major 

discussion. These words bring to a physicist’s mind a series of concepts and considerations 

that form the main subject of this work. 

The general framework in which this study is conducted is known as ‘complexity science’ 

(Lewin 1999; Waldrop, 1992). This is a rather recently formed corpus of multidisciplinary 

methods, and shares with tourism the common characteristic of being vaguely defined, not 

formalised and with disputed outcomes (Kauffman, 1995; Levin, 2003). Nonetheless, the 

latest results show enormous possibilities in improving our general understanding of social, 

economic, biological and technological phenomena (Amaral & Ottino, 2004; Arthur et al., 

1997; Durlauf, 1997; Henrickson & McKelvey, 2002; Ottino, 2004; Stacey, 1996). 

1.1 Preliminary framework to the research questions 

The concept of a tourism destination is central to tourism. 

Paraphrasing Ritchie and Crouch (2003: x) we may say that: 

While many other paradigms have been the basis of studies on tourism, we believe that, from a 

management perspective, the destination is the fundamental unit on which all the many complex 

dimensions of tourism are based. … While all of the different views of tourism are very 

valuable, we believe that a focus on the destination provides the integrated perspective that a 

destination must have if we are to comprehend, pull together and manage all the many elements 

that determine the success of a tourism destination. 

The nature of development and evolution of a tourism destination (TD) has profound 

implications not only for public authorities, as an aid in control and planning, but also for 

all the destination stakeholders, the beneficiaries of the outcomes. The basic hypothesis is 

that one of the main determinants of a tourism destination’s competitiveness is a balanced 

progress of all its components (Lozano et al., 2005; Ritchie & Crouch, 2003; Vanhove, 

2005). From a structural point of view, a tourism destination can be seen as an ensemble of 

elements of many different sorts, many of which are connected by some kind of 

relationship. 



- 4 -

A number of recent works have started to consider the characteristics of a tourism system 

with such a systemic approach. They make use of the ideas and the paradigms of the study 

of complex systems as a framework for understanding the many and different phenomena 

in the tourism sector (Farrell & Twining-Ward, 2004; Faulkner, 2000; Faulkner & Russell, 

1997; McKercher, 1999). 

Complexity is increasingly accredited as a key characteristic of the world we live in and of 

the way we perceive it. Although no common definition of complexity exists, it is possible 

to state that a system is complex when its properties cannot be derived as a simple 

composition (sum) of those characterising its components (Pavard & Dugdale, 2000). 

Many components bounded by a series of non-linear relationships give rise to behaviours 

that seem unpredictable, or at least look so on the basis of simplified (linearly 

approximated) models of components’ interactions. Basically, something is complex when 

equations that describe its progress over time cannot be solved analytically.  

Complex systems therefore are those in which local interactions between many elements 

give rise to complex behaviour at the level of the whole system. Understanding these 

systems is a challenge faced by many different scientific disciplines, from neuroscience 

and ecology to linguistics and geography. Complex adaptive systems (CAS) are called 

adaptive because their elements respond or adapt to events around them (Levin, 2003; 

Lewin 1999). Also, they may form structures that somehow maintain their integrity in the 

face of continuing change. The components of a complex adaptive system may follow 

simple rules and yet produce complex patterns that often change over time. They may 

become more elaborately structured and develop multiple levels layered on top of each 

other. In other words, complex adaptive systems may evolve (Bar-Yam, 1997). 

The tourism sector, as an economic activity, shares many of the characteristics that are 

used to define a complex adaptive system. Accidents of history, positive feedback, 

increasing returns, social multipliers, lock-in effects, non linearities, path dependency, 

evolution, self-organisation, emergence, outbreaks and catastrophes are all phenomena that 

have been used to explore social interaction in the emerging field of complexity. These 

phenomena have direct applications to tourism.  
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A number of tools have been developed in recent years to analyse a complex system. In 

their review, Amaral and Ottino (2004) identify three main classes of tools belonging to 

areas well known to physicists and mathematicians: 

� nonlinear dynamics; 

� statistical physics; and  

� network theory.  

Among these, the techniques belonging to what is called ‘network science’ are probably 

the most promising series of methods that can be used to model a complex system (Watts, 

2004). 

Many complex systems can be described in terms of networks of interacting elements. A 

number of researchers have shed light on some topological aspects of many kinds of social 

and natural networks (see the reviews by: Albert & Barabási, 2002; Boccaletti et al., 2006; 

Newman, 2003b). As a result, we know that the topology of a network is not just a 

curiosity, but a predictable property of some types of networks that affects their overall 

dynamic behaviour and explains a number of processes, from the diffusion of ideas in a 

social system, to the robustness to external attacks for a technological system such as the 

Internet, to the optimisation of the relationships among the network components and their 

effects on the transfer of information or knowledge. 

These investigative techniques can be considered a diagnostic method for collecting and 

analysing data about the patterns of relationships among people in groups or among 

organisations. They provide a view into the network of relationships that may give tourism 

organisation managers leverage to improve the flow of information and to target 

opportunities where this flow may have a crucial impact on regulatory or business 

activities. 

Network theory has been used only in a limited number of tourism related works (Cooper 

& Scott, 2005; Pavlovich, 2003a; Pavlovich & Kearins, 2004; Pforr, 2001, 2002, 2006), 

but none of the methods proposed here have been applied, up until now, to the study of 

tourism destinations. 
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1.2 Objectives and research questions 

The purpose of the present work is to apply network analysis investigation methods to the 

field of tourism studies. The general theoretical framework that will be used is known as 

the ‘science of complexity’ (Waldrop, 1992). The objective is to attain a better 

understanding of the general behaviour and dynamic evolution of a tourism destination and 

to analyse the implications for the general management of a tourism destination. This 

understanding may support not only tourism managers in control and planning, but also the 

public authorities responsible for developing the infrastructure and maintaining 

environmental quality and sustainability. 

By applying methods and techniques of ‘network science’, this work examines the 

evolution of a tourism system to give explanations of the occurrence and possible 

optimisations of dynamic processes such as information and knowledge diffusion.  

In summary (a deeper discussion will be conducted in Chapter 5), the main research 

question this thesis addresses is ‘How do tourism destination networks evolve over time?’ 

Subquestions are: 

o What is the structure of the tourism destination network and how do the real 

and technological networks compare in a tourism destination? 

o How does the network structure affect dynamic processes? 

o How can the network be optimised? 

o How can we build a model for network evolution that reproduces the 

present structure of the network? 

o How does this model relate to the history of the destination? 

1.3 The approach of this thesis 

The investigation presented in this thesis deals with the structure of a tourism destination 

network. Structure, in the social sciences literature, is seen as an enduring pattern in the 

components of a system and how they are assembled (Giddens, 1979; Radcliffe-Brown, 

1940; Wellman, 1988, 2002). Here structure is defined (and this term will be used 

throughout this work in this meaning) as a combination of the components of the system 
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(individual elements, the relationships among them) and how they are connected (the 

number and distribution of both elements and relationships). In this definition, structure 

refers both to the static elements and the dynamic processes that govern the system. The 

form of such a structure (its topology) is typified by the metrics described in Chapter 2; 

they mainly relate to the connectivity characteristics of the network.  

Although it would be possible, as has been done in many other studies, to use computer 

simulations to model an ensemble of tourism destination networks formed by stakeholders 

(see for example Boccaletti et al., 2006; Dorogovtsev & Mendes, 2002; Watts, 2004), the 

approach followed in this work is to analyse a real case. A study conducted on a real 

destination is obviously more interesting and can give more useful findings in many cases: 

for example, by connecting the outcomes of the ‘experiments’ with real situations or by 

posing constraints, derived from actual conditions, to the number and type of simulations 

that can be implemented. 

The first step in this research is the choice of a suitable tourism destination, as this 

underpins the quality and the validity of the results. It is preferable to deal with the 

smallest possible size of destination in order to ease the data collection process and for 

‘computational’ reasons; some of the algorithms involved could take a long time to run for 

very large networks. On the other hand, the size should be large enough to give statistically 

significant outcomes.  

The destination chosen as the ‘test bench’ is the island of Elba (Italy). The island is located 

three nautical miles (5 km) west of the coast of Tuscany, in the central part of the western 

Mediterranean Sea. It is a typical seaside summer destination. The island’s economy is 

almost exclusively dependent on tourism. Elba is one of the most significant Italian 

destinations in terms of tourist flows, both domestic and international. It counts an average 

(past five years) of 450 000 arrivals and 3 000 000 overnights per year, with very strong 

seasonality (peak in July-August). The destination offers its visitors (70% of whom are 

domestic) more than 600 accommodation establishments (hotels plus other establishments) 

providing about 12 000 rooms and 36 000 bed places.  



- 8 -

Data collection was performed by identifying, enumerating and surveying the possible 

types of relationships among the organisations acting in this tourism destination. This data 

was subsequently enhanced with any possible public sources giving similar information. 

Furthermore, a literature scan allowed gathering of data on comparable social systems 

(industrial districts, networks of corporations, etc.) which could serve as a reference, thus 

allowing a type of data triangulation to be used. 

Public sources were also integrated with a series of field surveys whose objective was to 

verify the reliability of the information gathered and to discover missing elements (nodes 

or links in the network). Sampling issues were addressed by studying how the 

characteristics of the whole network were affected by missing information on nodes and 

links and what confidence levels could be attained in considering a reduced subset of the 

whole network (Marsden, 1990). 

Simulation algorithms were used here that took into account available graph theoretical 

computational methods and the principles of statistical mechanics. Dynamic processes 

(information spreading, robustness with respect to external and/or internal crises, fragility 

to structural modifications, etc.) were then studied and the network was optimised with 

respect to efficiency of information or knowledge diffusion or other structural parameters. 

The comparison between the network topology of the tourism destination and more general 

social network communities made it possible to improve the optimisation algorithms in 

order to adapt it to better meet the expectations of stakeholders, local community and 

tourists. 

The characteristics of the local level interactions among actors allowed us to infer, at a 

statistical level, some general trends or behaviours in the evolution of the tourism 

destination system that could be validated by looking at available data. These, along with 

other information useful for characterising the conditions and evolution of the destination 

(statistical series on tourism and basic economy, historical data etc.) were gathered and 

organised. 

The application of the results of theoretical studies at this statistical level has several 

potential benefits: 
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� the definition of an appropriate growth model for a given network can be used to 

predict its extent and structure at later times; 

� changes to the network's structure can be designed to reduce its vulnerability and 

improve its functionality by changing specific parameters through management 

action; and 

� relevant mechanisms and parameters could be inserted into a specific network's 

design, by creating new structures, in order to encourage into the systems, solutions 

able to prevent (and to cope with) abrupt component faults, errors, attacks or external 

disruptions. 

Policy issues are very important in guiding the development of a tourism destination, both 

from the ‘managing body’, usually termed a destination management organisation, and 

from the individual stakeholders’ point of view (Buhalis, 2000; Framke, 2002b; Ritchie & 

Crouch, 2003). The analysis of the dynamic network evolution suggests the possibility of 

finding strategies to guide the evolution of such systems in order to meet some 

requirements of economic or social utility.  

Another application is that the wide diffusion of the Internet may lead us to think of a 

correlation between the topology of the World Wide Web (WWW) and the topology of the 

destination. This possible relationship can be verified. By comparing the ‘real’ network 

with its ‘virtual’ counterpart it is possible to obtain hints to improve the efficiency and 

effectiveness of the investments that tourism operators make in the field of information and 

communication technologies (ICTs). It is also possible to examine the interorganisational 

network of the destination’s websites (the hyperlinks among the organisations’ websites) 

and to assess the apparent level of collaboration achieved.  

Most of the results and the models on the structure of a tourism destination are derived by 

the analysis, mainly qualitative, of single cases. The importance of network structure, on 

the other hand, promotes the usage of the techniques initially tuned by sociologists and, 

more recently, by so-called ‘network science’. Formal analysis techniques are deemed able 

to uncover patterns that a casual inspection may not be capable of highlighting. Network 

analysis also plays an important role in determining the effectiveness of the nature of the 

relationships (see section 4.2.4). 
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However, although network analysis methods are quite ‘old’ and tourism is a network 

business, little research has been conducted so far in this field in tourism (Pavlovich & 

Kearins, 2004; Pforr, 2001, 2002, 2006). Indeed, the network approach has proved useful 

in both political and strategic tourism issues (Scott et al., 2008a) and in suggesting 

solutions for ‘practical’ problems (Shih, 2006).  

The proposal made here, to employ rigorous quantitative methods for the analysis of a 

tourism network, is thought to have important consequences for the study of a destination. 

It is not only an intriguing intellectual problem, but also a means to improve our ability to 

understand the functioning mechanisms of a tourism destination in order to manage it 

effectively and efficiently. 

1.4 Delimitations of the study 

A tourism destination system can be seen and analysed in many different ways, as can the 

network which can be drawn to represent it. This thesis sets forth a number of hypotheses 

that delimit the scope of the research. 

Specific assumptions will be discussed, when needed, in Chapter 5, dedicated to 

methodological issues. Nonetheless, the following premises have a global validity in this 

study: 

� the network nodes are organisations, companies, associations and the links studied 

are considered to be connecting these elements; 

� all connections are supposed to be undirected (symmetrical) and unweighted unless 

explicitly stated in specific parts or for specific analyses; 

� the general topological characteristics of the networks are studied. All the elements 

(nodes) will be considered as equivalent. Possible specific functions of single 

network elements are not taken into account; and 

� the network and the system are studied at a macro level, and therefore all 

characteristics derived have the same macro scale. In other words, considering only 

topological characteristics means abstracting from the specific features of single 
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actors and connections and examining the structure of the system as a whole and the 

relationships it has with the dynamic processes that may unfold over it. 

These are almost standard assumptions when performing an initial study of complex 

networks (Albert & Barabási, 2002; Boccaletti et al., 2006; Newman, 2003b). In our case 

they are employed to ease the computations in order to focus on the interpretation of the 

results and their implications for the management of a tourism destination. These 

assumptions, although representing a crude simplification when dealing with a socio-

economic system, are acceptable for the exploratory nature of the study presented here. 

1.5 Outline of the thesis 

The remainder of this work is organised as follows. 

Chapters 2, 3 and 4 contain a discussion of the theoretical background. In Chapters 2 and 

3, the general framework of complex systems theories, and the main findings of network 

analysis methods are presented. These include the theories based on statistical mechanics 

as well as those derived from the social network analysis models. Both static and dynamic 

models are analysed. Next in Chapter 4 the key models of the structure of a tourism 

destination are described. A destination is pictured as a cluster of companies, various 

organisations and communities, and the analysis of its structure may draw upon the theory 

of industrial clusters, their formation mechanisms and their evolution. A review of the 

main models related to industrial clusters is therefore presented as a natural introduction to 

the discussion on the structure of a tourism destination. 

Chapter 5 is dedicated to the methods employed for this study. First of all a more detailed 

description of the research questions and objectives is given. These are followed by a 

summary depiction of the epistemological framework in which this work was conducted. 

The research design, the discussion of the case chosen and the destination used as a ‘test 

bench’ are then presented. 

The chapter continues with the discussion of the methods and issues related to the 

collection of the data needed: network elements (nodes and links) and historical statistical 

data. The survey methods and the questionnaire used are examined along with the main 
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concerns about completeness of the data and possible issues pertaining to sampling in 

cases such as this. The methods and the tools used to analyse the network data and to 

perform the processes’ simulations are presented and, finally, the main limitations of these 

methods are examined. 

Chapter 6 presents the main results. It contains the findings from the static analysis of the 

network and gives the topological characteristics of the destination at the present time 

(2007). After that, the results of the simulations are discussed. The chapter continues with 

the results of the dynamic analysis and the reconstruction of the destination evolution in 

terms of network dynamics. 

The next chapter (Chapter 7) contains the discussion and interpretation of the results. It 

closes with an examination of the methods used and a discussion of the possible 

methodological implications for a tourism destination in terms of policy setting, planning 

and stakeholder management.  

The thesis ends with a further, final chapter (Chapter 8) containing a summary of the main 

conclusions of the study and the contributions of this study to the tourism field. Final 

considerations on the applicability and transferability of the approach examined in this 

work and possible further research directions conclude the thesis. 
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2 Theoretical background: models of complex networks 

This and the following two chapters describe the general theoretical background for the 

work presented in this thesis. As discussed in Chapter 1, the main aim of this research is to 

provide an interdisciplinary contribution to the study of a tourism system, namely a 

tourism destination, by simulating and analysing the main characteristics and the possible 

evolutionary paths of the network formed by its stakeholders and the relationships that 

bind them. As a consequence, the background for this work comes from three main fields 

of study: one concerning complexity theory and network models, one dealing with the 

economic characteristics of a cluster of industries and a third pertaining to tourism 

destinations. 

Network analysis methods are embedded into the literature of complex and chaotic 

systems, therefore this chapter starts with a brief introduction to these topics, highlighting 

the main lines of research and the methodologies used. This provides the theoretical 

framework in which network theories are embedded and justified. Then a review of the 

most important mathematical models of the topological characteristics of networks is 

presented. This review aims at providing a conceptual architecture and theoretical support 

for this thesis by grounding it on prior knowledge. As Boote and Beile (2005: 3) remark, a 

detailed and systematic literature review is a necessary foundation for the advancement of 

the collective understanding in any discipline. The analysis of strengths and weaknesses of 

previous studies is a necessary step to generate significant research. A critical reading of 

the achievements attained by those who have come before us, the process called 

generativity by Shulman (1999) and considered to be one of the hallmarks of scholarship, 

is used to grant this thesis integrity and sophistication (Shulman, 1999). It also serves the 

purpose of avoiding the idea, well known since Galileo (1623: 237), “that in 

philosophizing one must support oneself upon the opinion of some celebrated author, as if 

our minds ought to remain completely sterile and barren unless wedded to the reasoning of 

some other person”. 

The recent literature on network analysis has produced a large array of metrics, each with a 

number of possible computational mechanisms (Boccaletti et al., 2006; Caldarelli, 2007; da 

Fontoura Costa et al., 2007). Those presented have been chosen either because they are 
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generally considered to be the most effective in characterising the topological structure of a 

network or because they are particularly suitable for the type of analysis conducted here. 

The aim of this section is to present the results obtained so far and to give the basic 

definitions and measurement methods which will be used in the rest of the thesis. 

In these two areas this chapter deals with the static investigation of a network (static here 

means that the network that is considered to be a an ensemble of nodes and links fixed in 

time and space). Chapter 3 contains the description and the discussion of the main dynamic 

processes occurring in complex networks and their relationships with the network 

topology. Growth mechanisms are described first, along with their effects on the network 

structure. Networks here represent dynamic systems, subject to continuous modifications 

in the number of elements and in the patterns of the connections among them. Therefore, a 

crucial issue for this thesis is the modelling of this evolutionary growth and the resulting 

topology. A discussion on the robustness of a network with respect to possible external 

events follows. A socio-economic system such as the tourism destination studied is not a 

closed system. It interacts, at various levels, with the surrounding environment. External 

(and sometimes internal) circumstances can have a great impact on the structure of the 

system, especially if the magnitude of the events is big enough to risk causing disruptive 

changes in the system. It is therefore important to investigate under which conditions the 

system is able to absorb the shocks and still preserve a structure able to allow its ‘normal’ 

functioning. The second part of Chapter 3 analyses the behaviour of processes such as 

information or knowledge diffusion and the implications that a specific topology has on the 

evolution of the phenomenon. Changes in the topology of the system, obtained by 

numerical simulations, and their effects on the processes are finally discussed. 

To complete the theoretical background of the thesis, Chapter 4 contains a review of the 

literature of economics related to industrial clusters as an introduction to the discussion on 

the structure of a tourism destination. 

Apart from this general framework, more specific theories and models will be discussed in 

the different sections they apply to. 
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2.1 Complexity and complex systems 

In natural language, the concept of complexity has several meanings, usually related to the 

size and number of components in a system. There is still no universally accepted 

definition, nor a rigorous theoretical formalisation, of complexity. Nonetheless, it is 

currently a much investigated research topic.1

Intuitively we may characterise a complex system as “a system for which it is difficult, if 

not impossible to reduce the number of parameters or characterising variables without 

losing its essential global functional properties” (da Fontoura Costa et al., 2007; Pavard & 

Dugdale, 2000). The parts of a complex system interact in a non-linear manner. There are 

rarely simple cause and effect relationships between elements, and a small stimulus may 

cause a large effect, or no effect at all. The non-linearity of the interactions among the 

system’s parts generates a series of specific properties that characterise its behaviour as 

complex. 

It is important to highlight the difference between a complicated and complex system. A 

complicated system is a collection of a number of elements (often very high) whose 

collective behaviour is the cumulative sum of the individual behaviours. In other words, a 

complicated system can be decomposed into sub-elements and understood by analysing 

each of them. On the contrary, a complex system can be understood only by analysing it as 

a whole, almost independently of the number of parts composing it. 

For example, as Amaral and Ottino (2004: 147) note: 

A Boeing 747-400 has more than 3×106 parts. In complicated systems, such as the Boeing, parts 

have to work in unison to accomplish a function. One key defect (in one of the many critical 

parts) brings the entire system to a halt. This is why redundancy is built into the design when 

system failure is not an option. More importantly, complicated systems have a limited range of 

responses to environmental changes. […] a Boeing without its crew is not able to do much of 

anything to adjust to something extraordinary. 

On the other hand, a ‘simple’ object made of only two elements, a double pendulum, a 

pendulum hanging from another pendulum, is well known to any physics student for its 
 
1 This and the following sections are partial edited versions from Baggio, R. (2006a). 
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totally unpredictable, chaotic behaviour (under the basic Newtonian laws of motion). A 

‘simple’ school of fish, composed of a few dozen elements, is able to adapt its behaviour to 

the external conditions without apparent organisation but following a few simple rules 

regarding local interaction, spacing and velocity (Reynolds, 1987). 

Generally, as Bar-Yam (1997) notes, a complex system is a mesoscopic structure, 

composed of a number of interacting elements which is neither too low nor too high (but 

even this distinction is rather confused).  

In one special class of complex systems, the complex adaptive system (CAS), interactions 

among the elements are of a dynamic nature and are influenced by, and in turn influence, 

the external environment. In this type of system, the parts  

interact with each other according to sets of rules that require them to examine and respond to 

each other’s behaviour in order to improve their behaviour and thus the behaviour of the system 

they comprise (Stacey, 1996: 10). 

For a CAS, the main characterising features may be summarised as follows (Baggio, 2008; 

Levin, 2003; Waldrop, 1992): 

� non-determinism. It is impossible to anticipate precisely the behaviour of such 

systems even knowing the function of its elements. The dependence of a system’s 

behaviour from the initial conditions is extremely sensitive and appears to be 

extremely erratic; the only predictions that can be made are probabilistic;  

� presence of feedback cycles (positive or negative). The relationships among the 

elements become more important than their own specific characteristics, and the 

feedback cycles can influence the overall behaviour of the system; 

� distributed nature. Many properties and functions cannot be precisely localised, in 

many cases there are redundancies and overlaps; it is a distributed system; 

� emergence and self-organisation. A number of emergent properties are not directly 

accessible (identifiable or foreseeable) from an understanding of its components. 

Very often, in a CAS, global structures emerge over a critical threshold of some 

parameter. Typically, a new hierarchical level appears that reduces the complexity. 

In continuing the evolution, the system evolves, increasing its complexity up to the 

next self-organisation process; 
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� limited decomposability. The dynamic structure is studied as a whole. It is difficult, if 

not impossible, to study its properties by decomposing it into functionally stable 

parts. Its permanent interaction with the environment and its properties of self-

organisation allow it to functionally restructure itself; 

� self-similarity. It implies that the system considered will look like itself on a different 

scale, if magnified or made smaller in a suitable way. The self-similarity is evidence 

of a possible internal complex dynamic. The system is at a critical state between 

chaos and order, a condition that has been also called a self-organised critical state. A 

self-similar object, described by parameters N and z, has a power-law relationship 

between them: N = zk. The best known of these laws is the rank-size rule which 

describes objects as varied as population in cities, word frequencies, and incomes. A 

power-law means that there is no ‘normal’ or ‘typical’ event, and that there is no 

qualitative difference between the larger and smaller fluctuations. 

Examples of CAS include the patterns of birds in flight or the interactions of various life 

forms in an ecosystem, the behaviour of consumers in a retail environment, people and 

groups in a community, the economy, the stock market, the weather, earthquakes, traffic 

jams, the immune system, river networks, zebra stripes, sea-shell patterns, and many 

others.  

Complexity is a multidisciplinary concept derived from mathematics and physics that has 

been applied to the world of economics. As Saari (1995: 222) writes, “even the simple 

models from introductory economics can exhibit dynamical behavior far more complex 

than anything found in classical physics or biology.”  

To describe this approach, we may identify a number of features of an economy that 

present difficulties for the ‘linear’ mathematics usually employed in economics (derived 

from J. Holland, the father of genetic algorithms, and quoted in Arthur et al. (1997: 4): 

� Dispersed Interaction What happens in the economy is determined by the 

interaction of many dispersed, possibly heterogeneous, agents acting in 

parallel. The action of any given agent depends upon the anticipated actions 

of a limited number of other agents and on the aggregate state these agents 

co-create. 
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� No Global Controller No global entity controls interactions. Instead, controls 

are provided by mechanisms of competition and coordination between 

agents. Economic actions are mediated by legal institutions, assigned roles, 

and shifting associations. Nor is there a universal competitor—a single agent 

that can exploit all opportunities in the economy. 

� Cross-cutting Hierarchical Organization The economy has many levels of 

organization and interaction. Units at any given level—behaviors, actions, 

strategies, products—typically serve as ‘building blocks’ for constructing 

units at the next higher level. The overall organization is more than 

hierarchical, with many sorts of tangling interactions (associations, channels 

of communication) across levels. 

� Continual Adaptation Behaviors, actions, strategies, and products are revised 

continually as the individual agents accumulate experience—the system 

constantly adapts. 

� Perpetual Novelty Niches are continually created by new markets, new 

technologies, new behaviors, new institutions. The very act of filling a niche 

may provide new niches. The result is ongoing, perpetual novelty. 

� Out-of-Equilibrium Dynamics Because new niches, new potentials, new 

possibilities, are continually created, the economy operates far from any 

optimum or global equilibrium. Improvements are always possible and 

indeed occur regularly. 

A tourism system, involving such economic activity, shares many of these characteristics. 

The theoretical work in this field is still in its infancy and just a handful of researchers 

have started to consider the complex systems approach as a more effective framework for 

understanding the many and different phenomena (Farrell & Twining-Ward, 2004; 

Faulkner, 2000; McKercher, 1999). Complexity theory offers the hope of being able to 

understand, for example, how crises, disasters or turbulent changes may influence the 

sector, or why, after major crises such as 9/11, the tourism sector is able to show a rapid 

and almost unexpected recovery (UNWTO, 2002b). 

Chaos theory is considered by many researchers as part of the wider ‘complexity sciences’ 

field (Lewin, 1999). Basically, a system may be considered as evolving from a completely 

ordered phase to one in which its behaviour is so strongly dependent on very small 
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variations of the initial conditions to appear to be almost unpredictable: a ‘chaotic’ phase. 

In this, still governed by deterministic laws, the system may tend to certain specific 

configurations. These, the attractors and the regions close to them (their basins), can be 

fixed equilibrium points, or follow orbits or more complicated patterns. It is also possible 

to have a system that never returns to the same place (in these cases we speak of strange 

attractors).  

The region at the boundary of these phases, known as the ‘edge of chaos’, is a region of 

complexity (Crutchfield & Young, 1990; Waldrop, 1992). Chaos theory essentially studies 

non-linear effects in deterministic systems, while complexity theory studies definite 

patterns in non-deterministic systems (Gleick, 1987; Kauffman, 1995). 

In tourism, one model that explicitly adopts a chaos approach is the one proposed by 

McKercher. The main components of this system are (McKercher, 1999: 429):  

� The traveller, who is the essential player in tourism, for without people 

travelling no tourism would occur. 

� The communication vectors used to connect the traveller to the destination. 

� The considerations or factors that influence the effectiveness of the 

communication vectors used. 

� The destination or internal tourism community consisting of all businesses 

involved in tourism at the destination. 

� External tourism agencies (public and private sector) that try to influence 

tourism. 

� Other tourism-related externalities, such as alternative tourism destinations 

that affect a destination’s ability to attract travellers. 

� Non-tourism-related externalities, or macro-environmental forces, such as 

changing political, economic or social conditions, war, natural disaster, that 

affect people’s ability to travel. 

� Outputs from the system both desired and undesired. 

� Rogues or chaos makers who can push a system to the edge of chaos. 

The model describes the operation of complex tourism systems by representing the 

elements that influence tourism on a wide range of possible scales: national, regional, local 
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and, possibly, at an enterprise level. It supposes that even if the number of actors 

influencing the system changes at each level, the relationships between the different 

elements are similar. 

This way, the author provides a framework able to provide an analogy for the failure of 

many well designed, controlled and sustainable tourism development plans. By using this 

approach we may be also able to better understand the impact of the usage, and the uses, of 

technologies like the Internet on parts of the system and how the system may react to more 

developments (although only at a conceptual level). 

The general picture can be summarised in the following way. Let us consider a destination 

as a representative tourism subsystem. It is a system whose elements can be thought of as 

belonging to a number of groups (such as those proposed by McKercher, 1999). These 

groups are connected with relationships that exhibit a non-linear dynamic behaviour, 

producing outcomes that cannot be simply explained as ‘summing up’ the individual 

characteristics. In the evolution of the system it is possible to find many of the features 

indicated by Arthur et al. (1997) as portraying a CAS. 

A central property of a CAS is the possible emergence of unforeseen properties or 

structures termed self-organisation. This is one of the most striking features characterising 

a complex system. A consequence of this is the robustness or resilience of the system to 

perturbations (or errors); the system is relatively insensitive and has a strong capacity to 

return to a stable behaviour in the absence of external inputs. For tourism destinations and 

for the tourism sector in general, this property is the one which may be considered to have 

been exhibited on several occasions after crises and disruptions. Recent events such as the 

9/11 and Madrid terrorist attacks, the Bali bombings, the SARS epidemics, the Iraq war 

and others, have greatly affected the sector. However, almost unpredictably, the recovery 

to pre-event levels (see, for example, the tourist arrivals statistics provided by the WTO) 

was accomplished in a relatively short period of time, typically a few months. No simple 

‘linear’ model could have explained fully this behaviour. 
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2.2 Tools for the analysis of complex systems 

A number of tools have been developed in recent years to cope with the task of describing 

a complex system. Many of them originate from the work of 19th century scientists, but 

only modern computational facilities have made them amenable to calculation. In their 

review, Amaral and Ottino (2004) identify three main classes of analysis tools each 

belonging to an area well known to physicists and mathematicians: 

� nonlinear dynamics; 

� statistical physics; and  

� network theory.  

2.2.1 Nonlinear dynamics 

A striking characteristic of complex systems is the nonlinearity of the interactions among 

the components. The main consequence is that the equations describing a system’s 

behaviour (provided they exist) can be solved only in very rare cases.  

The work of Poincaré (1883; 1884) on the three body problem, at the end of 19th century, 

showed that even ‘simple’ Newtonian systems involving more than two bodies may exhibit 

very complicated dynamics with almost unpredictable results arising from small variations 

of the initial conditions. 

Since then, a number of mathematical techniques have been developed to approximate the 

solutions of the differential equations used to describe such systems, but only the advent of 

modern powerful computers made it possible to find solutions (which, in nearly all cases, 

can be obtained by numerical approximations). Much of the mathematics of chaos theory 

involves the repeated iteration of simple mathematical formulas, which would be 

impractical to do otherwise. Nonlinear dynamic systems are capable of exhibiting self-

organisation and chaos. This mechanism is called deterministic chaos, since the equations 

of motion which generate such erratic, and apparently unpredictable, behaviour do not 

contain any random terms. 

Deterministic chaos refers to the irregular (chaotic) motion generated by a system whose 

evolution is governed by dynamic laws that uniquely determine the state of the system at 
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all times from a knowledge of the system’s previous history. The source of irregularity is 

the exponential divergence of initially close trajectories in a bounded region of phase-

space. This divergence can be measured with the aid of the theory proposed by the 19th 

century Russian astronomer Aleksandr Mikhailovich Lyapunov (see Kantz & Schreiber, 

1997). In this sense, chaotic behaviour can be regarded as very complex dynamics. 

This sensitivity to initial conditions is sometimes popularly called the butterfly effect,

suggesting the idea that chaotic weather patterns can be altered by a butterfly flapping its 

wings. A practical implication is that it is essentially impossible to formulate long-term 

predictions about the behaviour of a dynamic system; even if it were possible to fix the 

initial conditions to a predetermined, finite accuracy, their errors would increase at an 

exponential rate.  

Examples of systems exhibiting nonlinear (chaotic) behaviour include the atmosphere, the 

solar system, plate tectonics, turbulent fluids, mixing of coloured dyes, economies, stock 

markets, population growth or the ‘simple’ double pendulum.  

2.2.2 Statistical physics 

Statistical physics (or statistical mechanics), one of the fundamental fields of physics, uses 

statistical methods for addressing physical problems. A wide variety of issues, with an 

inherently stochastic nature, are treated with these methods. It provides a framework for 

relating the microscopic properties of individual atoms and molecules to the macroscopic 

properties of materials observed in every day life. It is possible to explain thermodynamics, 

and thermodynamic properties, as a natural result of statistics and mechanics (classical and 

quantum).  

The main result, and power, of this approach is in the bypassing of some classical 

mechanics problems, such as the impossibility of solving the three-body problem, by 

dealing with systems composed of a large number of elements, and reasoning in terms of 

statistical ensembles. Moreover, it introduced the idea of discrete models and agent-based 

models (Wolfram, 2002). 

In recent years, our understanding of phase transitions and critical phenomena has led to 

the development of two important new concepts: universality and scaling (Amaral & 
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Ottino, 2004). Many physical systems exhibit universal properties that are independent of 

the specific form of the interactions among their constituents. This, for the sake of analogy, 

may suggest the hypothesis that universal laws or results may also show up in other types 

of complex systems, whether they be social, economic or biological. 

The scaling hypothesis, born in the framework of the study of critical phenomena, has 

provided the idea that a set of relations, called scaling laws, may help in relating the 

various critical-point exponents characterising the singular behaviour of an order parameter 

and of response functions. The predictions of the scaling hypothesis are supported by a 

wide range of experimental work, and also by numerous calculations on model systems. 

The concept of universality in statistical physics and complex systems has the basic 

objective of capturing the essence of different systems and classifying them into distinct 

classes. The universality of critical behaviour pushes the investigations on the features of 

the microscopic relationships important for determining critical-point exponents and 

scaling functions. 

Statistical approaches can be very effective in systems when the number of degrees of 

freedom (and elements described by a number of variables) is so large that an exact 

solution is not practical or possible. Even in cases where it is possible to use analytical 

approximations, most current research utilises the processing power of modern computers 

to simulate numerical solutions.  

One more important outcome of the use of statistical physics methods is the use of discrete 

models. The fundamental assumption is that some phenomena can be modelled in terms of 

computer programs (algorithms) rather than in terms of analytical expressions. Cellular 

automata (see for example Wolfram, 2002) are examples of discrete time and space models 

developed for a computer utilisation. 

Cellular automata are computer programs that model dynamic structures, discrete in space 

and time, that operate on a uniform, regular lattice, characterised by ‘local’ interactions. 

They are made up of many cells, each of which may be in one of a finite number of states. 

A cell may change state only at fixed, regular intervals, and only in accordance with fixed 
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rules that depend on their own values and the values of neighbours within a certain 

distance. 

Applications of such models exist in many fields of physical, chemical, biological and 

social sciences; the propagation of fire, predator-prey models or the evolution of artificial 

organisations can all be represented with cellular automata.  

2.2.3 Network theory 

Most complex systems can be described as networks of interacting elements. In many 

cases these interactions lead to global behaviours that are not observable at the level of the 

single elements and that share the characteristics of emergence typical of a complex 

system. Moreover, the collective properties of dynamic systems composed of a large 

number of interconnected parts are strongly influenced by the topology of the connecting 

network. This concept will be developed further in the next sections. 

2.3 Elementary graph theory 

The mathematical models of network structures have been developed in graph theory. A 

graph is a generalisation of the concept of a set of points (vertices, nodes), connected by 

links (edges, arcs). These, depending on the specific situation, may or may not have a 

direction (the graph is directed or undirected). In a directed graph it is possible to track a 

route from some vertex to another, but not in the opposite direction. Links may be 

associated with numeric values (they may represent distances, costs, energies, information 

exchanges etc.) called weights. In the last few years, a number of researchers have shed 

light on some topological aspects of many kinds of social and natural networks, (the 

WWW, power grids, collaboration networks, networks of words, metabolic networks, 

economic agents). 

2.3.1 A brief historical sketch of graph and network theories 

Graph theory is one of the few areas in mathematics with a definite date of birth.2 The 

paper that fixes the start is Solutio problematis ad geometriam situs pertinentis written in 

 
2 Part of this section forms the introduction to the book: Network Analysis and Tourism: From Theory to 
Practice, by N. Scott, C. Cooper and R. Baggio, Channelview (2008b) 
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1736 by the Swiss mathematician Leonhard Euler. In it, Euler proposes a mathematical 

formulation of the renowned Königsberg Bridge Problem:  

Is it possible to plan a walk through the town of Königsberg which crosses each of the town’s 

seven bridges once and only once?  

The puzzle problem, proposed to Euler by the Königsberg inhabitants, is stated in this way 

(the English translation of the original Latin paper can be found in Biggs et al., 1976): 

The problem, which I am told is widely known, is as follows: in Königsberg in Prussia, there is 

an island A, called the Kneiphof; the river which surrounds it is divided into two branches, as 

can be seen in Figure 2.1, and these branches are crossed by seven bridges, a, b, c, d, e, f and g. 

Concerning these bridges, it was asked whether anyone could arrange a route in such a way that 

he would cross each bridge once and only once. I was told that some people asserted that this 

was impossible, while others were in doubt: but nobody would actually assert that it could be 

done. From this, I have formulated the general problem: whatever be the arrangement and 

division of the river into branches, and however many bridges there be, can one find out 

whether or not it is possible to cross each bridge exactly once?  

Figure 2.1 The Königsberg bridges (source: Euler, 1736) 

The solution of the general problem is well known. In Euler’s words: 

So whatever arrangement may be proposed, one can easily determine whether or not a journey 

can be made, crossing each bridge once, by the following rules: If there are more than two areas 

to which an odd number of bridges lead, then such a journey is impossible. If, however, the 

number of bridges is odd for exactly two areas, then the journey is possible if it starts in either of 

these areas. If, finally, there are no areas to which an odd number of bridges leads, then the 

required journey can be accomplished starting from any area. With these rules, the given 
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problem can always be solved. When it has been determined that such a journey can be made, 

one still has to find how it should be arranged. For this I use the following rule: let those pairs of 

bridges which lead from one area to another be mentally removed, thereby considerably 

reducing the number of bridges; it is then an easy task to construct the required route across the 

remaining bridges, and the bridges which have been removed will not significantly alter the 

route found, as will become clear after a little thought. I do not therefore think it worthwhile to 

give any further details concerning the finding of the routes.  

Figure 2.2 Königsberg (from a 1894 map online at http://www.koenigsberg-stadtplan.de.vu/) 

The importance of Euler’s paper for the history of mathematics does not lie, obviously, in 

the solution of the game. It is related to the approach taken, the one stated in the very first 

paragraph of the paper: 

In addition to that branch of geometry which is concerned with magnitudes, and which has 

always received the greatest attention, there is another branch, previously almost unknown, 

which Leibniz first mentioned, calling it the geometry of position. This branch is concerned 

only with the determination of position and its properties; it does not involve measurements, nor 

calculations made with them. It has not yet been satisfactorily determined what kind of 

problems are relevant to this geometry of position, or what methods should be used in solving 

them. Hence, when a problem was recently mentioned, which seemed geometrical but was so 
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constructed that it did not require the measurement of distances, nor did calculation help at all, I 

had no doubt that it was concerned with the geometry of position - especially as its solution 

involved only position, and no calculation was of any use. I have therefore decided to give here 

the method which I have found for solving this kind of problem, as an example of the geometry 

of position.  

Geometria situs, as Leibniz had called it3 is today known with the name of topology, and 

Euler’s solution is the first of this kind formally stated and solved.  

Despite the numerous but sparse works on this topic in the second part of the 18th and in 

the 19th centuries (Cauchy, Kirchoff, Hamilton, Poincaré, to quote just the most famous 

authors), a formal setting of these theories came only exactly 200 years after the 

Königsberg bridges paper. In 1936, the German mathematician Dénes König (1884-1944) 

published in Leipzig the first systematic study of what he called graphs in his Theorie der 

endlichen und unendlichen Graphen (König, 1936). 

In the same period, ideas and techniques developed for the study of these abstract objects 

were applied to a completely different field. Realising that a group of individuals can be 

represented by enumerating the actors of the group and their mutual relationships, 

sociologists started using graph theory and methods to describe and analyse the patterns of 

social relations (Freeman, 2004; Wasserman & Faust, 1994). Jacob L. Moreno (1934) 

introduced sociometry. By using a sociogram (a diagram of points and lines used to 

represent relations among persons) he aimed at identifying the structure of relationships 

around a person, group, or organisation in order to study how these configurations may 

affect beliefs or behaviours. 

Today, the term social network analysis has superseded the earlier sociometry, but both 

refer to the analysis of social networks in part utilising graphical methods. Friendships 

among individuals, business relationships between companies, and trade agreements 

 
3 In a letter to C. Huygens (dated 8 September 1679), Gottfried W. Leibniz (1646-1716) writes: I am not 
content with algebra, in that it yields neither the shortest proofs nor the most beautiful constructions of 
geometry. Consequently, in view of this, I consider that we need yet another kind of analysis, geometric or 
linear, which deals directly with position, as algebra deals with magnitude. (quoted by Biggs et al., 1976: 20; 
see also Leibniz, 1693). 
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among nations are all examples of networks which have been studied by using these 

techniques. 

Different lines of research stem from this origin. As Scott et al. (2000: 7) states: 

A number of very diverse strands have shaped the development of present-day social network 

analysis. These strands have intersected with one another in a complex and fascinating history, 

sometimes fusing and other times diverging on to their separate paths. A clear lineage for the 

mainstream of social network analysis can, nevertheless, be constructed from this complex 

history. In this lineage there are three main traditions: the sociometric analysts, who worked on 

small groups and produced many technical advances with the methods of graph theory; the 

Harvard researchers of the 1930s, who explored patterns of interpersonal relations and the 

formation of 'cliques'; and the Manchester anthropologists, who built on both of these strands to 

investigate the structure of 'community' relations in tribal and village societies. These traditions 

were eventually brought together in the 1960s and 1970s, again at Harvard, when contemporary 

social network analysis was forged. 

Common terms such as weak ties in a social context, or the smallness of the world of our 

acquaintances, come directly from seminal works in this area such as that by Mark 

Granovetter (1973) or the Stanley Milgram (1967) experiments. 

The next major breakthrough in the history of network theories is a series of three papers 

published in the early 1960s by the Hungarian mathematicians Paul Erdős and Alfréd 

Rényi (1959; 1960; 1961) on random graphs. The problem addressed was a fundamental 

question in the quest for understanding graphs, networks and interconnection phenomena: 

how do these objects form? and how do they evolve over time?  

The approach used is statistical and probabilistic. The Erdős-Rényi (ER) model has, since 

then, become a standard model, able to explain many of the characteristics of the networks 

encountered in the real world (see section 2.4.1). For almost 30 years the ER model, the 

only available model of this kind, has been used, investigated and developed by many 

authors.  

In the last years of the 1990s, the Internet revolution had a tremendous impact on almost 

all aspects of our life. One of the crucial influences the Internet has had is in the birth of a 

completely new approach to the studies of networks. For the first time a huge mass of data 
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was available to researchers. Data were easily accessible and usable for sophisticated 

statistical analyses, and the Internet was the primary source, or the medium, for this 

availability. 

The beginning of the ‘New’ Science of Networks, as it has been named (Watts, 2004), lies 

in three papers written in 1998-1999:  

� Collective dynamics of ‘small world’ networks, by Watts and Strogatz (1998);  

� On power-law relationships of the internet topology by M. Faloutsos, P. Faloutsos, 

and C. Faloutsos (1999); and  

� Emergence of scaling in random networks by Barabási, and Albert (1999).  

These works have provided evidence that the ER model was simply a crude approximation 

of only a special class of networks, and that many of those found in the real world, 

technological, physical, biological or social, exhibited characteristics and properties of a 

different nature. Since then, a vast amount of work has been carried out and numerous 

phenomena have received explanation and have been modelled. Furthermore, it has 

strongly reinforced the idea that the collective properties of dynamic systems composed of 

a large number of interconnected parts are strongly influenced by the topology of the 

underlying network (see the bulky reviews by Albert & Barabási, 2002; Boccaletti et al., 

2006; Dorogovtsev & Mendes, 2002; Newman, 2003b). 

One more aspect of this work is also worth noting: the contributions to this new science 

are, probably for the first time in the history of science, truly and absolutely 

interdisciplinary. Physicists, mathematicians, computer scientists, biologists, economists, 

and sociologists are all equally contributing to the growth of the knowledge in this field. 

2.3.2 Graphs: main definitions  

A network of elements (such as people, computers, firms, or roads) is usually represented 

by a diagram consisting of a number of dots (nodes or vertices) and a number of lines (arcs 

or edges) connecting certain pairs of dots. From a mathematical point of view, in such 

diagrams the important thing is whether or not two given points are connected by a line, 

and the nature of the connection is disregarded. This abstraction is what we call a graph.
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Formally4 a graph G is an ordered pair of disjointed sets (V, E), where V = {v1,…vn} is the 

set of vertices and E = {(v1,u1),…, (vi,uj)} is the set of arcs. E is a subset of the Cartesian 

product V×V. In other words, E is a binary relation on V and its elements are pairs of 

elements belonging to V.

If E is symmetrical, i.e.:  

EvveEvvevv ijjijiijji ∈=⇔∈=∀ ),(),(:,

the graph is said to be undirected (Figure 2.3).  

If E is not symmetrical the graph is said to be directed (the term digraph is sometimes used 

to denote a directed graph). 

In a directed graph, edges are ordered pairs, connecting a source vertex to a target vertex. 

In an undirected graph, edges are unordered pairs and connect the two vertices in both 

directions, hence in an undirected graph (u,v) and (v,u) are two ways of denoting the same 

edge.  

The cardinality |V| of the vertex set (the number of vertices: n) is called order of the graph 

G; the cardinality |E| of the edges set (the number of edges: m) is called size of the graph G

(it must be noted here, however, that, quite often, the term size is used in the meaning of 

number of vertices of a graph). 

The different elements of a graph may assume different names: vertices are also called 

points, nodes, or actors, and the links among them are called edges, arcs, connections, or 

lines (usually, the term arc is used for a directed link between two nodes, edge for an 

undirected one). 

 
4 This and the following sections are derived from standard graph theory texts (Bollobás, 1998; Bondy & 
Murty, 1982; Diestel, 2005; Godsyl & Royle, 2001).  
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Figure 2.3 An undirected graph. 

A graph is called weighted if each edge has been assigned a numeric value w (weight); the 

weight can represent a distance, a time, a cost etc. (Figure 2.4). 

Figure 2.4 Graph types: a, b and c are simple graphs, (a) is undirected and unweighted, (b) is 
directed, (c) is weighted; (d) is a multigraph containing a loop. 

Two edges of a graph are called adjacent if they share a common vertex. Two vertices are 

called adjacent if they share a common edge, i.e.: (u,v)∈E (if the graph is directed, the 

converse may not be true). A vertex v adjacent to u is called neighbour, or first neighbour 

of u; the set of vertices adjacent to a certain vertex v: Γ(v) = {v∈V: v adjacent to u} is 

called neighbourhood of u.

A complete graph Kn of order n is a simple graph with n vertices in which every vertex is 

connected (adjacent) to every other. It has n(n-1)/2 edges (all possible choices of pairs of 

vertices). 
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A subgraph of a graph G is a graph whose vertex and edge sets are subsets of those of G. If 

all the vertices are connected the subgraph is called clique. Since any subgraph induced by 

a clique is a complete subgraph, the two terms and their notations are usually used 

interchangeably. A k-clique is a clique of order k (a 3-clique is called a triangle). The 

clique number ω(G) of a graph G is the order of the largest clique in G.  

If the set of vertices V of a graph G can be divided into two disjointed non-null sets A e B,

such that each edge of G connects a vertex in A with a vertex in B, the graph G is called 

bipartite (there are no ‘internal’ edges among the vertices in A or B).  

The edge’s density is the ratio between the actual number of links and the maximum 

possible number:  
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The number of edges connected to a vertex u is called vertex degree deg(u) (also indicated 

as du). In a directed graph the degree is usually divided into the in-degree and the out-

degree (whose sum is the degree of the vertex in the underlying undirected graph). The in-

degree of a vertex u is the number of edges with u as their terminal vertex. The out-degree 

of a vertex u is the number of edges with u as their initial vertex. A vertex may be said to 

be even or odd if its degree is such. 

Average (mean) and maximum degrees are the arithmetic mean and the maximum values 

for a vertex degree in a graph. It can be easily demonstrated that the average degree is: k =

2m/n, where m = number of edges and n = number of vertices. The maximum possible 

degree in a simple graph is ½ n(n-1) (each vertex is connected to all other vertices). A k-

regular graph is a graph in which all the n vertices have the same degree k.

In a graph G, the degree distribution P(k) is a function which gives the probability that any 

vertex u∈V has degree k (has k neighbours): Pr[deg(u) = k]. The sum of the degrees of all 

its vertices is called volume:
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An interesting parameter describing the connections in a neighbourhood of a certain vertex 

is the clustering coefficient. In an undirected graph, the number of all the possible 

connections between a vertex i and all its neighbours is Ei. The ratio between this value 

and the maximum possible number of edges in the graph [ki(ki-1)]/2 is called the clustering 

coefficient:
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Ci varies in the interval (0, 1) and represents a local density of edges. The average 

(arithmetic mean) of the clustering coefficients of all the vertices in a graph is the 

clustering coefficient of the graph: 
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Figure 2.5 An undirected graph and its adjacency matrix 

A standard way to characterise a graph is the adjacency matrix (Figure 2.5). An undirected 

graph G = (V, E) with n vertices can be represented by an n × n symmetric Boolean matrix 

AG whose elements are defined by: 

{ }


 ∈

=
otherwise 

Ejiif
jiAG 0

,1
],[
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If the graph is directed, AG is defined by: 



 ∈

=
otherwise 

Ejiif
jiAG 0

,1
],[

In this case the matrix is not symmetric (〈i, j〉 represents an ordered pair, Figure 2.6). 
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Figure 2.6 A directed graph and its adjacency matrix 

The adjacency matrix is symmetric if the graph is undirected. If the graph is weighted, the 

arrays contain integer or real numbers (instead of Boolean values), where the number 

indicates the weight of an edge.  

The adjacency matrix is unique for each graph and each graph has a unique adjacency 

matrix. This biunivocal relationship allows us to swap between the geometric and the 

algebraic (matricial) representation of a graph and to use the results coming from both 

areas interchangeably. Many interesting results derived from linear algebra techniques can 

be used. Some of them will be described in section 2.3.4. 

In a graph G, a path from vertex u to vertex u’ with length k is a sequence (v0, v1, …, vk) of 

vertices such that u = v0, u′ = vk and (v1, vi)∈E, for i=1, …, k. A path is the series of edges 

that connect (v0, v1, …, vk). If a path from u to v exists, v is said to be reachable from u. A

path is simple if it contains no vertex more than once, if some vertices are repeated, it is 

called a walk. A cycle is a path from some vertex to that same vertex. A cycle is simple if it 

contains no vertex more than once, except the start (and end) vertex, which only appear as 

the first and last vertex in the path. A cycle of length 3 is called a triangle, a cycle of length 

1 is called a loop. If G has no cycles it is said to be acyclic. A tree is a connected acyclic.  
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In a weighted graph, the length d(u,v) of a path p is the sum of the weight w on the relevant 

edges: 

∑ −= ),()( 1 ii vvwpd

If more than one path exists between two vertices u and v, the shortest path is the one for 

which the total weight δ(u, v) = w(p) is the minimum possible. If there is no connection 

between two vertices, it is customarily assumed to be: δ(u, v) = ∞. If the graph is 

unweighted, obviously, the length of a path is calculated by putting w = 1 for all the edges 

of the path. A shortest path (also called geodetic) is called, and interpreted as, the distance 

between two vertices. Paths and cycles and their characteristics are important structural 

features of a graph.  

The maximum value of the distance d(u,v) from a vertex u to each other v∈V is the 

eccentricity of u. The maximum eccentricity, i.e. the maximum d(u,v) for each pair of 

graph vertices, is the graph diameter diam(G) (or DG). The minimum graph eccentricity is 

called the graph radius r(G).

A first example of practical usage of the adjacency matrix AG of a graph G is in the 

calculation of the paths of a graph. It can be easily demonstrated (by induction) that the 

number of paths of length n from vi to vj is the (i, j) entry of n
GA . By raising AG to a power 

m so that all the elements aij of AG are positive, m is the diameter of G.

One more important parameter which describes a graph is its characteristic (or average) 

path length L(G). It is the arithmetic mean of the distance values calculated by considering 

all possible pairs of vertices. Since the number of pairs is ½(n(n-1), L(G) is defined by:
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A connected graph is an undirected graph that has paths between any two vertices. 

Connected components of a graph are the equivalence classes of vertices defined by the 

relation reachable from. A directed graph is strongly connected if it has a path from each 

vertex to every other vertex.  



- 36 - 
 

The maximum possible length for a path between any two vertices in a connected graph is 

n-1 (n order of the graph); the number of cycles is: I = m – n + 1. If a graph contains no 

closed cycles (it is a tree) and is connected, then: m = n – 1.

2.3.3 Graphs of social networks 

In the study of social networks, graph analysis techniques are the basis on which models 

are built. The discipline has developed its own language (typically a network node is called 

an actor or agent and the edges are denoted as ties or relationships), and a number of 

characteristics, relevant for the type of considerations existing in investigating groups of 

individuals or organisations, have developed with a peculiar terminology (Hannemann, 

2001; Scott, 2000; Wasserman & Faust, 1994). 

In particular, focus is given to the concept of centrality of a network node (actor) with 

respect to the others: the individual (vertex in a graph) most popular in his group, the one 

at the centre of the stage.  

Two main types of centrality measures exist: local and global. The first one quantifies, 

basically, how well a node is connected with its neighbourhood. The simplest measure of 

local centrality is the node degree:  

CD(vi) = deg(vi)

Global centrality takes into account the structure of the whole network in determining the 

importance of the position of a certain actor. The common measures used are closeness and 

betweenness. 

Closeness is expressed in terms of the distance (geodetic) between the different nodes. A 

vertex is globally central if its distance from many other vertices is small. In other words, 

the shorter the distances between node i and other nodes, the more central node i is. 

Formally: 
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where (d(vi,vj) is the distance between vi and vj). 

Betweenness assesses the probability that a path from actor j to actor k takes a particular 

route through an intermediary i. It can be interpreted as a local dependency of an actor 

from the others. Betweenness is defined as:  

∑ <
=
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where gjk is the probability that, for each pair j and k, vertex i belongs to the geodetic jk. In 

other terms, gjk(vi) is the number of geodetics between j and k that go through i, while gjk is 

the total number of geodetics between j and k.. It is thus possible to measure the centrality 

of i with respect to its possible role as an intermediary between j and k.

These measures depend on the size of the network. Therefore, to allow comparisons, they 

are standardised: degree centrality and closeness are divided by n-1; betweenness is 

divided by (n-1)(n-2).

2.3.4 Graph spectra 

Let A be a square matrix and x a non-null vector. It is possible to find a scalar λ such that 

(Lang, 1970): 

Ax = λx

λ is called eigenvalue for A and x is the corresponding eigenvector; together they form the 

eigenpair. The eigenvalue satisfies the equation: 

(A - λI)x = 0 

which has nontrivial solutions if and only if: 

det(A - λI) = 0. 
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This equation5 is known as the characteristic equation of A, and the left-hand side is known 

as the characteristic polynomial.: 

p(λ) = det(A - λI) 

There exist exactly n roots (not necessarily distinct) of a polynomial of degree n. If A is an 

n × n real matrix, then its n eigenvalues λ1, λ2, …, λn are the real and complex roots of the 

characteristic polynomial. Two similar matrices have the same characteristic polynomial 

and therefore the same eigenvalues (the same spectrum).  

The ordered set of the eigenvalues for A is called the spectrum of A.

sp(A) = λ1, λ2, …, λn with λ1 ≥ λ2 ≥ , …, ≥ λn

Since a graph is completely described by its adjacency matrix, expressions such as 

eigenvalue (or spectrum) of the adjacency matrix of the graph and eigenvalue (or 

spectrum) of the graph are equivalent. The number of eigenvalues of a graph corresponds 

to its order (number of vertices). For an undirected graph the adjacency matrix is real 

symmetric, hence its eigenvalues are all real numbers. 

Eigenvalues and spectrum of a graph are strictly connected to its structural characteristics 

and do not depend on the order of the elements of the matrix; they represent the topology 

of the graph (Seary & Richards, 2003). 

The spectral density ρ(λ) of a graph is the spectral density of its eigenvalues. For a finite 

system it is defined as the sum of δ functions: 
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where δ is: 

 
5 The determinant of a square matrix, denoted with det(A), is a function that associates with each matrix A a 
single scalar number. It is calculated as the sum over the product of all permutations of all elements within 
any row, multiplied by either +1 or -1, depending on whether the respective permutation is even or odd. 
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ρ(λ) converges to a continuous function for n→∞.

In a complete graph the maximum eigenvalue (the principal eigenvalue) corresponds to the 

common degree of the graph, otherwise it is at least equal to the average graph degree (it is 

an indicator of the edge density): 
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If G is an unordered k-regular graph, k = λ1, and the multiplicity of k as eigenvalue of G

equals the number of connected components of G.

A connected graph with diameter D has at least D+1 distinct eigenvalues and  

λ1 ≥ 1/(D volG); where vol G = ∑deg(v) (vol is the volume of the graph). 

If dmax is the maximal degree of a graph G (E= m number of edges), we have:  

),min()( max EdGi ≤λ

The second smallest eigenvalue is a measure of graph compactness; a large value indicates 

a compact network, a small one is an indicator of an ‘elongated’ topology. 

The eigenvector In-1 corresponding to the second smallest eigenvalue λn-1 is used to solve 

the minimum cut problem: dividing a graph into two subgraphs of (almost) the same order 

with the minimum possible number of connections between them.  
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The Perron-Frobenius theorem (Godsyl & Royle, 2001) states that there exists a unique 

positive eigenvalue λA whose value is the largest (∀ eigenvalue κ : |κ| ≤ λA); its logarithm 

is used as a measure of the entropy of a graph:  

h(G) = log (λA)

It is also possible to define an energy for a graph G as the sum of the absolute values of all 

of its eigenvalues: 
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If the degree distribution of a graph follows a power law with exponent α (P(k) ∝ k-α), the 

highest eigenvalues are distributed according to a power law with exponent α/2.

The degree matrix D is a diagonal matrix associated to the adjacency matrix AG, whose 

elements are defined as: 
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From D two more important matrices can be derived: 

Laplacian matrix: L = D – A 

Normal matrix: N = D-1 A 

L defines a set of prime differences among the vertices of G and can be interpreted as 

being analogous to the continuous operator gradient ∇; its square LLT as the continuous 

operator Laplacian ∇2. L is a symmetric n×n matrix (n = order of the graph G): 
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(wij = weight of the edge ij, for an unweighted graph: w=1 for all the edges).  

L has a number of interesting properties: 
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� L is a real and symmetric matrix, therefore all its eigenvalues are real; 

� all the eigenvalues of L are non-negative; 

� the eigenvalues of L are in the interval [0,2]; 

� the second smallest eigenvalue indicates the connectedness of the graph; 

� the multiplicity of the null eigenvalue equals the number of the connected 

components in G.

The spectrum of the Laplacian matrix of a graph can be seen as a normalised spectrum; 

this makes easier the comparison of different spectra and of different topologies. For this 

reason the Laplacian spectrum is increasingly used for the study of the network properties. 

Besides the capacity of revealing the structure of a network, the spectrum can be used to 

define local metrics able to take into account the whole structure of the network.  

One example is the eigenvector centrality measure (Bonacich, 1972, 1987). This measure 

recognises the idea that not all connections are equal. Higher weight is given with a 

reciprocal process in which the centrality of each node is proportional to the sum of the 

centralities of those to whom it is connected. If xi is the centrality of vertex i , which has j

neighbours, the centrality is given by: 
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where λ is the principal eigenvalue of the graph. The formula can be rewritten as:  

λx = Ax 

where x is the eigenvector corresponding to λ (the principal eigenvector of the graph).

A variant of eigenvector centrality is employed by the Google search engine to rank web 

pages (the PageRank described by Brin & Page, 1982). 
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2.4 Random networks 

This section contains the discussion of the main network models and their characteristics, 

and the most important dynamic processes that influence, or are influenced by, the 

different topologies of networks.  

The standard references for the whole section (unless otherwise noted in specific parts) are 

the reviews by Boccaletti et al. (2006), Watts (2004), Newman (2003b), Albert and 

Barabási (2002), Dorogovtsev and Mendes (2002), and the books by Bornholdt and 

Schuster (2002), Dorogovtsev and Mendes (2003), and Pastor-Satorras and Vespignani 

(2004).  

2.4.1 The Erdős-Rényi model 

As discussed above, the Erdős-Rényi (ER) model is the first which has attempted to 

provide an explanation of the behaviour of a large real network. Up to the end of the last 

century, this model was the only means of representing all those situations in which a 

regular lattice could not reasonably explain a certain phenomenon. 

An ER random network (graph, Figure 2.7) is formed by N nodes connected by L links 

taken at random from the N(N-1)/2 possible links (Erdös & Rényi, 1959). This way we 

build a statistical ensemble of graphs, all having the same probability. The number of 

graphs in the ensemble is: 

L
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As an alternative, it is possible to use a binomial model. Starting with N nodes, two at a 

time are connected with probability p; the number of edges L is a stochastic variable with 

expected value: 
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Figure 2.7 The formation of an ER random graph 

The probability of obtaining a graph G0 with N vertices and L edges is: 
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G0 is a connected graph without duplicate edges if N - 1 ≤ L ≤ N(N - 1)/2. A relation 

between L and N exists, even if the two parameters are considered to be independent of 

each other. 

The construction of a graph is sometimes called a process of evolution. Starting from N 

isolated nodes, the graph develops with subsequent additions of random edges (with 

probability p). In different stages we obtain increasing connection probabilities up to a 

fully connected graph (p→1). ER random graphs are indicated as G(N,p) or GN,p 

The model studies the features of graphs for N→∞ and the connection probability p which 

generates some property Q. The important result is that, given a probability p, Q exists in 

(almost) all graphs generated or it does not exist at all. That is, there is a critical threshold 

pc beyond which Q appears; if p(N) grows faster than pc(N), (almost) all the graphs have Q,

otherwise no graph has Q.

In other words, the probability that a graph with N vertices and L edges connected with 

probability p = p(N) has Q is: 
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The critical probability pc(N) behaves like the similar parameter (percolation threshold) of 

the percolation theory6 (Stauffer & Aharony, 1992). In a physical system, usually, N is 

fixed, so the different regimes are identified by values of p greater or smaller than pc.

In random graph theory the connection probability is a function of the graph order: p is the 

fraction of edges actually present with respect to the total N(N-1)/2. This means that, for 

many properties Q, there is no single threshold pc independent from N; rather, it is defined 

as a function of the network size and for the percolation threshold the relationship 

pc(N→∞)→ 0 holds.

The mean number of edges per node (mean nodal degree): k = 2L/N = p⋅(N-1) ≅ pN also 

has a critical value which depends on N.

Degree distribution 

The degrees ki of the vertices i follow a binomial distribution with parameters p and N-1:

kNkk
Ni ppCkkP −−
− −== 1
1 )1()(

P is the number of ways by which k edges can be connected to a certain node. The 

probability of having k edges is pk and there are k
NC 1− equivalent ways of choosing k nodes 

at the ends of an edge. If i and j are different nodes, P(ki=k) and P(kj=k) are independent 

stochastic variables. 

For high N values, with good approximation, the distribution P(k) has, as a limit, the 

Poisson distribution (Figure 2.8): 

 
6 Percolation theory deals with fluid flow (or any other similar process) in random media. The medium can 
be represented as a set of regular lattice points. The percolation threshold is the critical fraction of lattice 
points that must be filled to create a continuous path of nearest neighbours from one side to another of the 
medium. 
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1 )1( and k=σ . If the vertices are 

independent, the number of them having degree k is Xk ≈ N P(ki=k). 

Figure 2.8 Degree distribution for a graph with N=10 000 and p=0.0015 compared with the 
expected value of a Poisson distribution (after Albert & Barabási, 2002) 

 

Connection and diameter 

The graph diameter D is the maximum possible distance between any two vertices. If the 

graph is not connected, and there are a certain number of isolated components, D = ∞. In 

this case it is possible to use the diameter of the greatest component as the graph diameter. 

Random graphs tend to have small diameters if p is large enough. There is a good 

probability that the number of nodes with distance l from a given node is not too much 

smaller than 
l

k . The diameter D depends on the logarithm of the node number: 
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Clustering coefficient 

Given a random network G(N,p), if we consider a vertex and one of its first neighbours, the 

probability of their connection is equal to the probability that any two nodes are connected. 

The clustering coefficient for such a network is therefore: 

N
kpC pNG ==),(

The ratio C/ k as a function of N, drawn on a log-log paper, is a line with slope -1. This 

ratio is a constant for a given network (given N). 

Generation of a graph with given degree distribution 

A network with an assigned degree distribution can be built in the following way. A degree 

distribution pk is defined, so that pk is the fraction of nodes having degree k. The series of 

degrees will be the set of n values ki for the nodes j = 1, …, n. Each node j is assigned ki

outgoing ‘segments’. Finally, n pairs of segments are randomly joined.  

This process produces all possible topologies of a graph with a given degree distribution 

and equal probability. In the ensemble thus obtained, all graphs have the same weight. 

2.5 Small-world networks 

Despite the large size of a network, two vertices have often a relatively ‘short’ distance 

between them; in this case we speak of small-world networks (SW networks). A random 

graph (ER-like) is the simplest network which may show this effect; the typical distance 

between any two of the N nodes scales as ln(N). 

The phenomenon of SW networks was first observed in social networks. Stanley Milgram 

(1967) studied the problem of estimating the number of acquaintances needed to pass a 

letter from one side to the other of continental USA. His conclusion was that the chain 
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needed, on average, six persons: a remarkably low number for such a great distance and 

possible number of people involved. 

The phrase ‘six degrees of separation’, and the expression ‘small world’ (the title of 

Milgram’s paper) have become commonly used to signify that, in a social context, any two 

persons are bound by a relatively small number of ‘steps’. In fact, there seems to be a high 

probability that even in a very wide social group, if two individuals are friends of a third 

person, there is a higher probability they are friends than any other two persons taken at 

random. This way, connected clusters are formed inside a larger network. 

Just like a social network, a small-world graph is characterised by a relatively short 

average distance and a high clustering coefficient (the network is made up of dense 

clusters). In a random ER graph, the distance between two vertices is small on the average, 

but there is no tendency to create clusters (all edges are equiprobable). The modification of 

the degree distribution into a non uniform one does not imply the generation of clusters 

(vertices with high degree do not necessarily pile up in dense subgraphs). 

The model by Watts and Strogatz (1998) describes the generation of a small-world 

network. The initial graph is a regular circulant graph GC:N,k in which a vertex v (of the N)

is connected to 2k neighbours (k in each direction). A certain number of edges {v,w}

chosen at random are reconnected (rewired) with probability p to other vertices of the 

graph (multiple edges are excluded). The process is repeated k times. 

To avoid obtaining an unconnected graph, the condition 1 << ln N << 2k << N is imposed 

(2k >> ln N guarantees that the resulting graph is connected). The reconnection can be 

obtained by substituting the chosen edge or by adding new edges to the original graph. In 

this case nk pairs {v,w} of nodes are taken randomly and nk edges with probability φ are 

added, getting nkφ new shortcuts.  

The two techniques can be combined (Figure 2.9).  

 



- 48 - 
 

Figure 2.9 Generation of a small-world network obtained by rewiring (a) existing links or 
adding (b) new edges (after Dorogovtsev & Mendes, 2002) 

In the starting graph GC:N,k the clustering coefficient is C = 3(k − 2)/4(k − 1), which 

converges to C=3/4 for large k values. The average distance in such a graph is proportional 

to N1/d (d = dimension), which grows faster than ln(N).  

If we study C(p) e l(p) (clustering and average distance as a function of the rewiring p), we 

find that, for the initial regular lattice l(0) ~ N/2k >> 1 e C(0) ~ ¾, l scales linearly with 

the order of the graph and C is rather large. For p→1 the graph converges to a random 

graph in which: l(1) ~ ln(N)/ln(k) and C(1) ~ k/N (total number of edges is constant), 

therefore l has a logarithmic behaviour and C decreases with N. In other words, a large C is 

associated with a large l and a small C with a small l.

However, numerical simulations show that there is a range of p values in which l(p)~l(1) 

but C(p) >> C(1). In this regime the graphs have clustering and short average distances 

(Figure 2.10); in this range we speak of SW networks. 
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Figure 2.10 Clustering coefficient and average distance in SW networks (after Watts & 
Strogatz, 1998) 

2.5.1 Features of small-world networks 

Characteristic distance 

The appearance of shortcuts between distant nodes causes a sudden fall in the 

characteristic distance l, while locally, the network stays ordered. The transition does not 

happen until p ≥ 2N/k (or at least a shortcut exists). The critical probability pc depends on 

N and on a crossover size N* (Figure 2.11).  
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From numerical simulations N* ~ p-τ with τ = 1/d (d = lattice dimension) for a circle d=1.

Therefore, the small-world behaviour appears at pc ~ 1/N. The situation is similar to the 

critical probability at which a giant component is formed in an ER network or to the bond 

percolation critical probability.  
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Figure 2.11 Crossover size for different dimensions of the lattice (after Albert & Barabási, 
2002) 

In summary: 
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For the one-dimensional case, for values of u far from 1 (mean field approximation):  
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The variable pkNd represents the double of the average number of shortcuts in the graph 

(given p) and f(u) is the average of the fraction with which the distance between two 

vertices reduces for a certain value u.
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In an SW network with N nodes and L edges, the average distance l depends on the average 

〈s〉 of the Euclidean shortest distances between two diametrically opposed vertices and on 

its square 〈s2〉:
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Clustering coefficient 

SW networks, besides having a short characteristic distance, have a relatively high 

clustering coefficient (see the definition formula in section 2.3.2). 

For both versions of SW networks (with and without rewiring), the clustering coefficient is 

(Figure 2.12): 

with rewiring: 3)1(
)12(2

)1(3 p
k

kC −
−
−

=

without rewiring: 
)2(4)12(2

)1(3
++−

−
=

pkpk
kC

Figure 2.12 Clustering coefficient vs p for networks with different N (after Barrat & Weigt, 
2000) 
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Degree distribution 

The degree distribution derives from the generation of an SW network. At the beginning 

(p=0) all vertices have the same degree, the distribution is a δ centred on k, then, with 

probability p ≠ 0, shortcuts are added. They introduce some ‘noise’ which widens the 

distribution. For k>2, unlike in ER networks, there are no isolated nodes. 

The SW degree distribution is given by: 
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for j ≥ k; P(j) = 0 for j < k.

Figure 2.13 Degree distribution in SW networks for k=3, N=1000 and for a corresponding ER 
network (full circles) (after Albert & Barabási, 2002) 

The shape of the distribution is similar (Figure 2.13) to that of a random network (ER) with 

a peak at k = K. The topology of an SW network is homogeneous, and most nodes have 

about the same number of links. 
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Other characteristic parameters 

Proximity ratio can be seen as a small-worldness index. It is defined as the ratio between 

clustering coefficient and characteristic distance normalised to the values the same network 

would have in the hypothesis of full randomness (ER): 

lC
lC

rand

rand=µ

Connectivity length is obtained by generalising to weighted networks and introducing a 

separation distance ds(u,v) as the smallest physical (weighted) distance in the set of paths 

between two vertices u and v (if the network is not connected, some distances may be 

infinite). The connectivity length D is the harmonic mean of the ds:
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The behaviour of D is similar to that of l if calculated globally, to 1/C on a local scale. 

Efficiency: Besides the adjacency matrix A, it is possible to define a distance matrix L

whose elements lij are the physical distances between i and j (i.e. total weight of the 

connection, strength of the interaction etc.). If the graph is unweighted, L is the unit matrix 

I. The cost matrix is: D = A ⋅ L, where dij = aij ⋅ lij.

The efficiency of a pair ij of distinct vertices is (Latora & Marchiori, 2001): 

εij = 1 / dij 

The average efficiency of the graph G is the average of the efficiencies of its vertices: 
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This global efficiency can be normalised with respect to that a complete graph K would 

have in which dij = lij ∀ i,j∈ V (the maximum possible): 
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Εglob(G)= Ε(G)/ Ε(K) 

Eglob varies in [0,1]. At a local level, similar quantities can be calculated. If we consider the 

subgraph Gu of the neighbours to u, normalising to Kdeg(u), the local efficiency is: 

∑Ε=Ε
u

uloc N
1

The efficiency of a network is an approximation of C and l (normalised, Figure 2.14); it 

has the advantage of being computable even for an unconnected graph (for which ε = 0

instead of having an infinite value). 

In systems with small differences in the node-to-node distances Eglob ~ 1/l, if the graph has 

many dense subgraphs, Eloc ~ C.

Figure 2.14 Local and global efficiencies as functions of the rewiring probability (after Latora & 
Marchiori, 2001) 
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It is possible to introduce a cost evaluation function γ(lij) that represents the cost associated 

with the generation of a link. The total graph cost Cost(G) is (it includes a normalisation to 

K and varies on [0,1]): 
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If γ(x) = x (identity function), the cost could be considered proportional to the connection 

length. An economical SW network is a network with high Eglob and Eloc and low Cost 

(Figure 2.15). 

Figure 2.15 Simulation of Eglob, Eloc and Cost (after Latora & Marchiori, 2001) 

As for the proximity ratio µ, an efficiency index can be defined: 

η = Eglob(rand) Eloc / Eloc(rand) Eglob 

The values calculated for real networks are in good agreement with the corresponding µ

values. 

2.6 Scale-free networks 

Many real networks have a degree distribution which is significantly different from the 

expected Poisson or exponential distribution (typical of the ER random networks).  
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Even cases in which an exponential tail exists show a power-law behaviour such as P(k) ~ 

k-γ (Figure 2.16 and Figure 2.17) . These networks do not have a characteristic scale 

parameter k (the mean of a Poisson distribution). They are, therefore, denoted as scale-

free (SF) or scale invariant. 

Figure 2.16 Examples of degree distributions of real world networks (after Albert & Barabási, 
2002) 

The ER and SW models described above are not able to explain the generation and the 

evolution of these networks. The problem was first challenged by Barabási and Albert 

(1999), whose model renders the main characteristics of such networks. Its importance is 

in the accuracy with which it is capable of simulating open dynamic systems, that is, 

systems that change their shape by adding (or removing) elements and connections among 

them. Moreover, SF networks are able to model the relationships among network elements 

that, in many cases, are not random at all, but follow definite rules. 
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Figure 2.17 Distributions: Poisson, exponential and power-law (drawn on a log-log diagram)  

The SF model is a dynamic one. In contrast to ER and SW models, which allow the 

generation of an ensemble of graphs with the desired topological characteristics, the SF 

model tries to explain the evolution of a complex network over time. The main underlying 

hypothesis is that, by explaining the temporal evolution, it is also possible to obtain a 

correct description of the topology of the resulting network. 

Two main methods for the generation of a SF network exist: stochastic and deterministic 

(Albert & Barabási, 2002; Dorogovtsev & Mendes, 2003).  

The stochastic method consists of the application of two rules (Figure 2.18): 

� growth: starting with a small number of nodes m0, at each time interval t a new node 

(or more than one) is added. This one connects with m≤m0 edges to m existing 

vertices; 

� preferential attachment: the choice of the connections is not random, but the 

probability with which a new node attaches to an old one i depends on the degree ki

of i so that: 
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After t time intervals, the network has N = t + m0 nodes and mt edges. With 

numerical simulations it is shown that the probability that a vertex has k edges 
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follows a power law with exponent γSF = 3 (i.e.: P(k) ~ 2m2 k-3). The scaling 

exponent is independent from m and it is the only parameter of the model. 

Figure 2.18 Stochastic generation of a SF network 

The second method (deterministic) follows a hierarchical rule: at each step the elements of 

the previous one are reused. We start from a single node, the root of the graph, and at each 

interval the existing elements are tripled and all vertices are connected to the root. This 

way it is possible to obtain a distribution P(k) ~ k-γ with γ = ln 2 / ln 3 with an average 

number of connections, at step n (for a sufficiently large n), equal to k = 4n/3 (Figure 

2.19). 

Figure 2.19 Deterministic generation of a SF network 

2.6.1 Features of scale-free networks 

Characteristic distance 

The characteristic distance of an SF network grows logarithmically with the number of 

nodes N; a generalised form for the relation is (Figure 2.20): 

l = A ln(N – B) + C 
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Figure 2.20 Average distance l as function of N, a comparison between SF and ER models with 
same size and mean degree (after Albert & Barabási, 2002) 

Node-degree correlation 

In a random graph there is no correlation between vertices and degrees. In a SF network these 

correlations are present.  

Let us consider nodes with degree k and nodes with degree l, nkl is the number of pairs 

connected with degrees k and l. We have: nkl ≠ nk⋅nl. That is, correlations exist, while for 

random networks nkl = nk⋅nl. The only case in which a simple factorisation exists is the one 

in which 1 << k << l for which nkl ≈ k-2 l-2 (in the absence of correlations it would be: nkl =

k-3 l-3). The SF generation process creates non trivial correlations among the network 

vertices. 

Clustering coefficient 

There is no analytical expression for C.

The coefficient decreases with the order N of the network approximately as C ~ N-0.75. In 

case of a random graph we would expect C = k N-1. C is independent from N in a small-

world (Figure 2.21).



- 60 - 
 

Figure 2.21 Clustering coefficient in SF and ER networks (after Albert & Barabási, 2002) 

Assortative networks 

In social network analysis, assortative mixing (or linking) refers to selective connections in 

which actors of a similar degree are connected among them.  

Let P(k’|k) be the joint probability that a neighbour of a vertex with degree k has degree k’.

A correlation measure is: 
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If this value is growing, the network is said to be assortative; if it is constant the network is 

not assortative; if it is decreasing the network is disassortative (there is a tendency for a 

node with high degree to connect to nodes with low degrees). An assortativity coefficient 

is given by the Pearson correlation coefficient between the degrees ki and kj of the nodes 

(Newman, 2002a): 

jiji kkkkr −∝

with the meanings: r>0 for assortative networks, r=0 for non assortative networks and r<0 

for disassortative networks. 

Numerical simulations with joint probabilities of the type (inversely proportional to k): 
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for p→1, γ→3 (as for the standard SF model). 

With an exponential probability: 
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there are two different behaviours. For high p values, the distribution is still scale-free. At 

low p we find a power law if k is small, a peaked distribution if k is high. The transition 

happens at p ~ 0.5 (Figure 2.22). 

The assortativity of a network is directly connected to its robustness (resilience) properties; 

the more assortative a network is, the higher its resilience (Newman, 2002a, 2002b).  

Figure 2.22 P(k) behaviour for assortative networks at different degree correlation probabilities 
(after Catanzaro et al., 2004) 

The betweenness distribution has a similar power-law behaviour P(b) ∝ b-η (η = 2.2). It 

depends on the degree k in an analogous way: b(k) ∝ k-(γ-1)(η-1) ( k exponent = 1.31). 



- 62 - 
 

The two relations are shown in Figure 2.23 for probabilities with inverse proportionality 

(inv), exponential (esp) and for data on scientific collaborations for physics papers 

published in the Arxiv/cond-mat online archive (cm). 

Figure 2.23 Betweenness distribution and relation with k (after Catanzaro et al., 2004) 

2.6.2 Graph spectra 

The spectrum of the connectivity (adjacency) matrix of a graph is an important element in 

the study of networks as it contains much information about a network’s topology (see 

section 2.3.4). 

A graph G(N,p) with N vertices has N eigenvalues. Let us consider a random graph in 

which p(N) = cN-z. For z < 1 there is an infinite cluster and for N→∞ every node belongs to 

it. In this case the spectral density ρ(λ) converges to a semicircular distribution (de Aguiar 

& Bar-Yam, 2005; Farkas et al., 2001).  

This distribution (see Figure 2.24) is commonly referred to as Wigner’s Law (after the 

papers by Eugene Wigner, 1955; 1958): 
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The largest eigenvalue (principal) λ1 is separated from the main part of the spectrum and 

grows with the size of the network as pN. When z>1 the spectral density is different from a 

semicircle. The odd moments of ρ(λ) are null; this indicates that the only way to ‘go back’ 

to a node is to follow the same path, i.e. there are no closed paths, therefore the graph is 

composed of trees. 

Figure 2.24 Spectral density for a random graph (N = 1024). The peak corresponds to the 
principal eigenvalue (after de Aguiar & Bar-Yam, 2005) 

In a small-world network, the spectrum depends on the rewiring probability p (Figure 

2.25). 

At p=0 the network is a regular periodic lattice, and the spectral density ρ(λ) has many 

singularities. At values of p between 0 and 1 the singularities go ‘out of focus’ and when 

p→1 it gets closer to the semicircle typical of ER networks. 
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Figure 2.25 Spectral densities for a SW network with p=0, p=0.01, p=0.3 and p=1 (after Albert 
& Barabási, 2002) 

The spectral density of a scale-free network has a continuous behaviour, and it is 

remarkably different from the semicircular shape typical of ER networks. Numerical 

simulations (de Aguiar & Bar-Yam, 2005) show that most of the density has a triangular 

shape (Figure 2.26). 

Figure 2.26 SF network spectral density (after de Aguiar & Bar-Yam, 2005) 
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The tails follow a power law, and the principal eigenvalue λ1 is clearly separated from the 

rest of the distribution. It plays an important role in the moments of ρ(λ) determining a 

loop structure in the network. The fraction of loops with more than four edges increases 

with N, that of triangles decreases in the thermodynamic limit (N→∞). A lower bound for 

λ1 is √k1 (k1 = maximum degree in the network); since in an SF network the degree values 

follow N1/2, we have λ1 ∝ N1/4.

2.7 Conclusions 

The observed non-linearity of the relationships among the numerous components of social 

and economic environments and the difficulty in stating simple laws to study the behaviour 

of such systems calls for a number of methods and techniques assembled in what is known 

as science of complexity.7

A number of tools have been developed in recent years to describe a complex system and 

they can be grouped in three main areas: 

� nonlinear dynamics; 

� statistical physics; and  

� network theory.  

The last one has recently received attention and has provided useful results in many fields, 

since many complex systems can be described in terms of networks of interacting elements 

(sections 2.1 and 2.2). 

Intuitively, the concept of network is a spatial one. However, since the very beginning of 

the study of graphs, it has been realised that the description of such objects, and the 

solution to the problems associated with them, did not correspond well with their metric 

properties. Graph theory, the mathematical framework for the science of networks, was 

born and has evolved as a topological discipline. This means that many of the 

characteristics of a network and of the systems that can be represented by a network 

depend exclusively on the network form. Systems sharing similar characteristics will have 

 
7 This section is an edited version of the introduction to the book: Network Analysis and Tourism: From 
Theory to Practice, by N. Scott, C. Cooper and R. Baggio, Channelview (2008b) 
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similar properties and behaviours, independent of the nature of their constituents (section 

2.3). 

The distribution P(k) of the vertex degrees (number of connections), the clustering 

coefficient C (interpretable as a local density) and the average length L of the shortest 

paths between any two vertices have been found to be characterising parameters for the 

topology of a network. 

The first mathematical model, used for many years to describe almost all kinds of 

networks, come from Erdős and Rényi. According to the ER model, a graph is a set of 

nodes connected two at a time with a certain probability. The random distribution of the 

node degrees P(k) follows, for large sizes, a Poisson law. This implies that most vertices 

have about the same number of links (the average degree 〈k〉), while nodes with a degree 

that deviates significantly from the average are extremely rare. The tail (high k region) of 

the degree distribution P(k) decreases exponentially. 

The clustering coefficient C depends on the average degree of the network 〈k〉. It is 

therefore constant for a given graph. The mean path length L is proportional to the 

logarithm of the network order, L ∝ log n. An ER graph is in equilibrium; the number of 

vertices is fixed. A possible evolution is obtained by varying the connection probability. 

One of the most interesting results of this model is that a number of peculiar characteristics 

depend strongly on special values of p (section 2.4). 

At the end of the 1990s, empirical studies confirmed that, in many cases, ER random 

graphs are quite different from real world networks. Subsequently, numerous 

investigations have been done and a great variety of theoretical works have been published. 

The first evolution of the ER model is the one proposed by Watts and Strogatz (1998). 

Watts and Strogatz (1998) noticed that a number of examples exhibited clustering 

coefficients significantly higher and mean shortest path lengths lower than expected. 

Small-world (SW) networks arise as the result of a random replacing (rewiring) of a 

fraction p of the links of a regular lattice with new random connections. In this 

evolutionary process they position themselves between the two limiting cases of a regular 

lattice and a random graph. An SW network is still characterised by a Poissonian degree 
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distribution; the local neighbourhood is preserved and the diameter increases 

logarithmically with the number of vertices. This is why they are called small-world 

networks: it is possible, on the average, to connect any two vertices through just a few 

links (section 2.5). 

The analysis of other real world networks (Internet routers and web pages, in particular) 

led to the discovery that such systems had a peculiar characteristic. Their degree 

distribution approximates a power law: P(k) ∝ k–γ. The distribution is largely uneven and 

there is no characteristic mean nodal degree (the mean of a Poissonian ER or SW 

distribution). A few nodes act as very connected hubs, having a very large number of ties, 

while the majority of nodes have a small number of links. The absence of a characteristic 

average degree 〈k〉, the characteristic scale of the network, has gained these networks the 

name scale-free (SF) , or scale-invariant networks. 

SF networks are dynamic systems; they grow with the addition of new nodes and new links 

that are not distributed randomly, but follow specific mechanisms. The most commonly 

invoked is a preferential attachment in which a new node has a higher probability to attach 

to one of the most connected ones. Deviations from pure power laws (kinks, cut-offs etc.), 

which can be observed, are generally explained by introducing corrections or nonlinear 

terms in the expression of the preferential attachment, by considering the limitations given 

by the finiteness of the network size or by assigning special properties (age, fitness or 

attractiveness) to some of the network actors.  

The network thus created does not have an intrinsic modularity (the clustering coefficient 

C is independent of the degree k). Scale-free networks with degree exponents 2 < γ < 3,

values found in most real cases, have very small average path lengths (typically L ∝ log 

log N, significantly shorter than the one typical of SW networks). 

Other complex networks, mainly if they represent social or biological systems, exhibit 

multiple characteristics such as modularity, high local densities and scale-free topology. 

The nodes are part of highly clustered areas, with few hubs that are responsible for 

connecting the different neighbourhoods. Hierarchical models of network formation have 

been devised, assuming that clusters mix in an iterative way and create a hierarchical 
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structure. The resulting network has a power-law degree distribution and a large average 

clustering coefficient. More importantly, C follows a power law C(k) ∝ k –1. This latter 

characteristic is thought to be the signature of a hierarchical network (section 2.6). 

Table 2.1 shows some examples, reported in the literature, of real networks along with 

some of the main parameters measured (adapted from Albert & Barabási, 2002; Boccaletti 

et al., 2006; Caldarelli, 2007; Dorogovtsev & Mendes, 2003; Pastor-Satorras & 

Vespignani, 2004). 
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3 Theoretical background: network dynamics 

A complex adaptive system such as a tourism destination is a dynamic entity. It undergoes 

a number of different evolutionary processes due to internal mechanisms or to external 

events during which its structure may change. New elements may be added to the system, 

different sets of relationships may be established, and parts of the system may be deleted or 

inhibited. Moreover, various processes may occur which use the web of connections 

among the system’s components as a medium, and the topology of this web can influence 

their development (Boccaletti et al., 2006; Ebel et al., 2003). Therefore, it is important to 

study the evolution and the behaviour of a network (representing the system) from a 

dynamic point of view. This chapter examines the main results on this subject. 

This study of network dynamics is a major departure from the ‘traditional’ social network 

analysis and may be considered a main advance of contemporary network science. As 

Moody et al. (2005: 1209) remarks, “much research on social networks is filled with static 

nouns, such as ‘roles’, ‘relations’, ‘obligations’, and so forth”. The structural focus of 

much social network research has been criticised by some scholars (Emirbayer, 1997; 

Emirbayer & Goodwin, 1994; Moody et al., 2005) also think this approach limits the 

understanding of the dynamic nature of social relations. On the other hand, this bias can 

lead to a risk of overly simplistic theorisation, while the investigation of networked 

systems could be “far richer and more theoretically nuanced when combined with theoretical 

insights arising from research on network dynamics” (Hoang & Antoncic, 2003: 181). 

Two types of dynamics are discussed in this chapter: one internal, and concerning the time 

evolution of the number of nodes and links, and one concerning the relationships with the 

external environment. This latter type regards the overall behaviour of a dynamic process 

occurring in a system and its reactions to the different possible topologies of the underlying 

network. The basic models of network growth are discussed first, then the reactions of a 

networked system to external events are described along with the methods to assess its 

resilience (capacity to absorb external or internal shocks while maintaining its basic 

functioning characteristics focusing on knowledge transfer). Thus the following part deals 

with the diffusion of information and knowledge and the effects of the network’s topology 

on the evolution of this process. 
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The final section describes the World Wide Web (WWW). The importance of the Internet 

and related technologies in many fields and in tourism in particular is well known. In this 

part the most accepted models of the WWW are seen from the network science point of 

view. This will allow comparison of the structural characteristics of the real and virtual 

networks of the tourism destination under study in order to derive insights into the 

technological side of the destination activities. 

3.1 Basic graph evolution 

The classical ER model is a static model with a fixed number of nodes N. A random graph 

with N nodes and p(N)∝N z (-∞ < z < 0) contains isolated trees and no cycles until z < -1 

( k = pN →0 for N→∞). When z passes through -1 ( k =cost) the asymptotic probability to 

have cycles, of every order, passes from 0 to 1; for z→0 the graph contains complete 

subgraphs of all finite orders.  

There is a sudden change in the structure of the clusters when k → 1. For 0 < k < 1 the 

clusters are trees or contain one and only one cycle. The average number is N-L, the largest 

is a tree whose size is proportional to lnN. When k assumes the value ck = 1, the largest 

has about N2/3 nodes; for k >1 it has a finite fraction of nodes and S = 1-f( k ) (f(x) varies 

exponentially from f(1)=1 to 0 for x→ ∞). When pc ≈ 1/N, the network suddenly changes 

its topology from a collection of small clusters to a system, in which a giant component 

(cluster) exists. This is defined in different ways in the literature, but the commonly 

accepted definition is that a giant cluster is formed by a connected subnetwork containing 

the majority of the nodes so that there is a definite path among all of them. 

The transition to a giant cluster happens if and only if: 

∑ >−
k

kPkk 0)()2(

The supercritical phase is characterised by this giant component whose size S grows 

proportionally to the difference between p and pc:

S ∝ (p - pc). 
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This has a striking analogy with the percolation threshold probability (see section 2.4.1). 

A graph can be used as a representation of a complex system (see section 2.2); as such it is 

possible to study its evolution during time. Let us suppose we have a random network in 

which, for each time increment, the number of vertices grows by one unit and randomly 

connects to an ‘old’ vertex (Dorogovtsev & Mendes, 2002) 

Starting with two nodes at time t = 1, at time t the network will have t+1 nodes and t 

edges; the total degree is 2t. The average shortest path length (characteristic distance) is l ~

ln t. If p(s,k,t) is the probability that a vertex s has degree k at time t, the total degree 

distribution is: 

∑
=+

=
t

s
tksp

t
tkP

0

),,(
1

1),(

The equation, for t→∞ has the solution: 

P(k) = 2-k 

These networks are called exponential (in a pure random network the degree distribution 

P(k) follows a Poisson behaviour). 

For s, t >>1 the average degree of a single node is: 

)/ln(1),( tstsk −=

For a fixed s/t ratio, the degree distribution is: 









+
= +

s
t

kt
stksp k 1ln

)!1(
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The function decreases rapidly for large values of k. Similar results can be obtained if the 

new node forms a fixed number > 1 of connections with the older nodes. 
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Figure 3.1 Size of the components and of the giant cluster in an ER network (after Newman, 
2003b) 

In general, during the evolution of a random graph, the following applies: 

� if k = pN < 1, the graph is unconnected and composed of isolated trees; D is the 

maximum diameter of its subtrees. The critical probability for which almost every 

graph has a subgraph with z nodes and l edges is: pc(N)=cN-z/l; the one for which a 

tree of order z exists is pc(N)=cN-z/(z-1); the one for which a cycle of order z exists 

is pc(N)=cN-1 and the one for which a complete subgraph of order z exists (with all 

the vertices connected by the all possible z(z-1)/2 edges) is pc(N)=cN-2/(z-1) (c is a 

proportionality constant); 

� if k = pN > 1, a giant component appears, if k ≥ 3.5, its diameter is proportional to 

ln(N)/ln( k );

� if k = pN ≥ ln N, the graph is completely connected and its diameter is close to the 

value ln(N)/ln( k ). 

The average path length lrand depends on N in a similar manner to the diameter: 

k
Nlrand ln

ln
≈
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A different expression for its value is: 

1
)/ln(
)/ln(

12

1 +=
zz
zNlrand  

where z1 = k and z2 are the average numbers of first and second neighbours of a vertex. 

3.1.1 Dynamic scale-free networks 

A scale-free network model is a dynamic one. The network assumes its characteristics 

through a process of addition of links which is, essentially, governed by a preferential 

attachment mechanism (see section 2.6). This mechanism can have a number of variations, 

all giving, as an outcome, a network with a power-law distribution in the degrees, although 

some deviations may be present. 

Finite size effects 

The SF model presented in section 2.6, is valid in the thermodynamic limit (i.e. for a 

number of nodes N→∞). The finite size of a real network generates deviations from the 

‘pure’ power-law behaviour of the degree distribution.  

Figure 3.2 Power-law degree distributions for networks with different sizes (adapted from 
Baiesi & Manna, 2003) 
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From a formal point of view this can be obtained by thinking of a correction factor to the 

basic power-law distribution (Baiesi & Manna, 2003), i.e.: P(k) ~ k-γ ⋅ f(k/Nν), where 

f(x)→0 for N→∞. The deviation shows up as the appearance of curvatures in the shape of 

the function. An example of what happens in this case is given in Figure 3.2. By increasing 

the network size, the cut-off becomes less pronounced and smoother. 

Non-linear preferential attachments 

Preferential attachment rules can be non-linear, i.e. with the form Π(k) ~ kα. In these cases, 

typically, the scale-free nature of the network is destroyed. The only case in which the 

topology is preserved is when the preferential attachment is asymptotically linear: Π(k) ~ 

α∞ k for k→∞. In this case: 

∞

− +=≈
α
µγγ 1con    )( kkP

Any exponent between 2 and ∞ can thus be obtained. 

Attractiveness and accelerated growth 

A further characteristic of Π(k) in many real networks is that Π(0)≠0. It has a non-null 

probability that a new node connects an isolated one. In general we have: 

αkAk +=Π )(

where A is an initial attractiveness for a node and represents the probability that an element 

is ‘discovered’ and connected by new nodes, even if it does not have any existing 

connections. The initial form of Π(k) would explicitly exclude that. The degree distribution 

becomes P(k) ~ k-α with α = 2 + A/m, (m = number of edges added to each new node). An 

initial attractiveness maintains the scale-free topology.  

If, then, in a directed network at each t a new vertex adds c0tθ links (accelerated growth 

with a preferential attachment such as Π(kin) ~A+ kin), the exponent becomes α = 1 +

1/(1+θ), still preserving the topology. 
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Age and cost limitations 

The basic SF model can be enriched with limitations due to age or cost considerations. 

Vertices with age or degree higher than a certain value can refuse new connections from 

the most recently generated nodes. Alternatively, if the network is weighted, nodes whose 

total weighted degree is greater than a critical value are prevented from adding new 

connections.  

In all these cases, the effect for the degree distribution is the presence of knees or cut-offs 

that modify the ‘linear’ (on a log-log plot) behaviour. These effects are more visible if the 

cumulative degree distribution is plotted (P(>k) instead of P(k)).  

Examples are given in Figure 3.3. 

Figure 3.3 Deviation from a pure power-law (solid line) of the degree distribution due to age (a) 
or cost (b) constraints (after Amaral et al., 2000) 

Limited information 

One more mechanism able to modify the ‘pure’ power-law shape of the degree distribution 

is a limitation in the information a node has on the overall characteristics of the network. In 

other words a node may establish a connection with only a subset of the other nodes of the 

network. This fact, as reported by some authors (Mossa et al., 2002; Štefančić & Zlatić,

2005) is responsible for truncations in the power-law behaviours of the degree 

distributions. 



- 78 - 
 

Fitness 

The competition characterising many aspects of different kinds of systems can also be 

traced also in a complex network. It reveals itself as an intrinsic capability of a node to 

obtain more connections at the expense of others. To realise that, it is possible to introduce 

a fitness parameter η, with distribution ρ(η), which modifies the preferential attachment 

expression as follows: 

∑
=Π

i
ii

ii
i k

k
η

η

A new node will have a probability to create connections that depends on its fitness. This 

fact can explain the reason why, in many situations, recent elements can achieve a greater 

success by increasing their connections at a higher speed than older nodes.  

The time evolution of k is: 

)(

),(
i

i
ii t

tmttk
ηβ

η 







=

where β(η) = η/ C and C ~ ∫ρ(η)dη.

For a uniform ρ(η) distribution C=1.255 and the degree distribution becomes: 

k
kkP

C

ln
)(

1−−
≈

This situation leads to a very interesting conclusion. Bianconi and Barabási (2001) have 

shown that there is remarkable analogy between this phenomenon and those particle 

systems, known in quantum mechanics, that satisfy the Bose-Einstein statistics.  

Let us assign each node in a network a quantity: εi = - (1/β) ln ηi. It may be interpreted as 

an energy and 1/β=T as a temperature. 
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A link between two vertices i and j with energies εi and εj corresponds to two interacting 

particles, each at its own energy level. The addition of a new element means adding a new 

energy level l and 2m new particles to the system. One half of these will be at energy l, the 

others will be distributed on the energy levels of their correspondents. The probability that 

a particle has energy at level i can be written as follows (see for example Landau & 

Lifshitz, 1980): 

∑ −

−

=Π
i

i
i

i

i ke
ke

βε

βε

 

Following the time evolution, for t→∞ the number of particles with a given energy is: 

1
1)( )( −

=
−µεβε

e
n

which is the expression for the Bose-Einstein statistics. The occupation of lower energy 

levels corresponds to the number of links possessed by the nodes with higher fitness. 

The topology of such a network is affected by the energy (fitness) distribution p(ε). It has 

been shown (Bianconi & Barabási, 2001) that for a distribution such that p(ε)→0 as ε→0,

there is a critical temperature TBE at which there is a topological transition. If T < TBE, the 

node with highest fitness acquires a finite fraction of links and keeps it indefinitely. This 

corresponds, in quantum mechanics, to the Bose-Einstein condensation. If the temperature 

T > TBE, fitter nodes will get connections faster, but, by increasing the network size, the 

proportion of connections to vertices with higher degrees decreases with time. This phase 

is called fit-gets-rich (FGR, see Figure 3.4). 

Figure 3.5 shows the behaviour of maximum degree in a system with energy distribution 

ρ(ε) = Cεθ (with ε∈(0,1); m=2 and θ=1). 
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Figure 3.4 Fit-gets-rich phenomenon and Bose-Einstein condensation analogy (after Bianconi & 
Barabási, 2001) 

 

Figure 3.5 Maximum degree in a SF network as function of temperature T (after Bianconi & 
Barabási, 2001) 
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The evolution of many complex systems such as the Web, the industry and the economy, 

follows the dynamic laws that describe the interactions among the parts of the system. In 

many cases, in spite of their non-equilibrium and irreversibility characteristics, they are 

ruled by Bose-Einstein statistics and may undergo a condensation. This quantum 

mechanical analogy is able to explain famous mechanisms known as first-mover 

advantage, rich-gets-richer, winners-take-all, in terms of distinct thermodynamic phases of 

a complex network. 

3.2 Dynamic processes on complex networks 

Complex systems and their associated networks are dynamic entities and, more 

importantly, are subject to a number of different dynamic processes in which, as it has 

been discovered in the last years, their topology plays a crucial role. In the following 

sections some of these processes will be discussed. 

3.2.1 Robustness and fragility 

One of the most important qualities of a complex system is its reliability. For a network, 

this depends on its topological characteristics such as connectivity, nodal degrees or 

average distance. A high degree of tolerance to errors is a feature existing in many 

different systems. For example, relatively simple biological organisms are able to live and 

proliferate in spite of difficult environmental conditions in which they may survive, even in 

presence of external potentially destructive shocks. Complex communication networks (the 

Internet, for example) exhibit high robustness. Single elements may have malfunctions or 

may stop working, but the whole network does not lose its capacity to transfer messages or 

to allow communication between two nodes. 

The stability of these systems must be attributed, at least partially, to their topology, 

independently from the characteristics of single nodes or links. In other words, the 

robustness of a network depends on the type of connectivity it has.  

The stability can be studied by simulating the removal of a certain number of nodes or 

links. An error tolerant or robust network is a network that still contains a giant connected 

component after the elimination of a fraction of elements. 
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Experimental results (Albert et al., 2000; Crucitti et al., 2003) show that there is a close 

relationship between topology and robustness. In particular, scale-free networks are 

stronger than ER networks in the case of a random removal of vertices, but they are more 

vulnerable to targeted attacks to their hubs. 

In a simulation, the robustness of a graph is measured by randomly removing a certain 

number of nodes. A targeted attack is simulated by deleting a certain number of vertices 

chosen among those with the highest degrees. 

Let us consider a random connected graph with N nodes and let us remove a fraction f of

them (a node removal also implies the deletion of all the edges attached to that node). 

There exists a threshold value fc(N) such that if f < fc(N) the resulting subgraph stays 

connected. If f > fc(N) the graph is disconnected (see also section 2.4). Actually, this is an 

inverse percolation problem, with the difference that the critical threshold depends on the 

number of vertices N.

The quantities measured are: 

� average path length l between two randomly chosen nodes; 

� relative size S of the largest connected component (giant cluster, if it exists); 

� average size s of the connected components (excluding the giant cluster). 

The difference in behaviour between a random network (exponential or ER) and an SF 

network is remarkable (Figure 3.6). 

In an ER network, there is no significant difference between the two deletion methods. The 

dependency on f (the fraction of nodes deleted) is the same in both cases. A SF network 

(having a degree distribution with exponent γ ≤ 3) yields, instead, to completely different 

results. For a targeted attack, the SF network has a behaviour which is qualitatively similar 

to the one of an ER network: there is a critical fc beyond which the network is destroyed. 

On the other hand, when the node deletion is random, the SF network has a substantial lack 

of critical threshold (fc→ 1). 
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Figure 3.6 Simulation of the effects of malfunctions (random removals, solid line) and targeted 
attacks (dotted line) for random (exponential and ER) networks and scale-free networks (after 
Dorogovtsev & Mendes, 2002) 

The same behaviour can be observed (Figure 3.7) also for local and global efficiency 

(Crucitti et al., 2003). It is worth remembering here that there is a close correspondence 

between the average distance, the clustering coefficient and the two efficiencies: more 

precisely L → Eglob and C → Eloc (see section 2.5.1). 

Scale-free networks are robust (have high resilience) to random removals of elements 

while they show high fragility to attacks to the components with the highest connections. 
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Figure 3.7 Local and global efficiency as a function of random and targeted removal of a 
fraction p of nodes in different networks (after Crucitti et al., 2003) 

3.2.2 Diffusion in complex networks 

Diffusion processes are of great importance. Diseases, viruses, cascading failures, but also 

information, messages and ideas are subject to phenomena that can be modelled in similar 

ways. Recently, then, it has been understood that the shape of the system serving as 

medium for the diffusion may have a crucial influence.  

The process is, in general, bound to the percolation properties of the network studied. One 

of the most used diffusion models, derived from clinical epidemiology, it the so called SIS 

(susceptible-infected-susceptible) model, valid to describe a vast class of diffusive 

phenomena (Anderson & May, 1992; Diekmann & Heesterbeek, 2000). 

The model starts by supposing that a node of a network is susceptible to an infection and 

that it is infected with rate ν when it has at least an infected neighbour. Infected elements 

are cured with rate δ and turn susceptible again. 
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The effective infection rate λ ≡ ν/δ is the main parameter of the model. 

Let us take into account undirected equilibrium networks, i.e. those with a definite and 

fixed number of nodes and edges (static and stable networks). 

In exponential homogeneous networks (with a Poissonian degree distribution such as the 

ER and SW networks), the situation is similar to that of a disease that spreads out: it exists 

as a non-null threshold λc ~ k ( k = mean degree) below which the phenomenon 

extinguishes very rapidly (exponentially). In other words, when a node is contaminated, 

the average density of infected nodes (prevalence) ρ(t) goes to 0 very quickly (Figure 3.8). 

Figure 3.8 Infection model and critical threshold (after Pastor-Satorras & Vespignani, 2003) 

When λ > λc the infection spreads and becomes endemic: 

ρ(t→∞) ≡ ρ ∝ (λ - λc)

In homogeneous networks the threshold is: 

2k
k

c =λ

If this value is small, it coincides with the critical percolation value for randomly damaged 

networks: λc ≅ pc. If κ1 is the largest eigenvalue of the adjacency matrix, the critical 

threshold is also λc = 1/κ1.



- 86 - 
 

If an infinite network has a power-law degree distribution (SF network) with exponent γ ≤

3, the infection is endemic for every λ > 0 (Pastor-Satorras & Vespignani, 2001, 2002, 

2003). Hence, there is no critical threshold. Such networks, so resilient to random 

damages, are also incredibly sensitive to epidemic diffusion. Both phenomena, in fact, 

depend on the shape of the degree distribution tail. 

The limiting effects of a finite number (even if large) of elements bring us to the condition 

depicted in Figure 3.9. 

If γ = 3, in an infinite network, the prevalence of the endemic state is (B = constant): 

ρ ~ e(-B/λ)

if γ > 3, but close enough to 3: 

ρ ~ (λ - λc)1/(γ-3) 

Only when γ > 3 do we go back to a situation in which ρ ∝ (λ - λc).

Figure 3.9 Diffusion (infection) in SF networks (solid line) compared to homogeneous random 
networks (ER, dotted line) (after Pastor-Satorras & Vespignani, 2003) 

In finite networks, the size effect leads to the presence of an effective critical threshold 

which depends on the network size (number of nodes N): λc(N) ≅ pc(N). For γ ≤ 3 the 

threshold is large, and it is observable only for values close to 2. 
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Figure 3.10 Immunisation techniques for SF networks at a fixed spreading rate (after Pastor-
Satorras & Vespignani, 2002) 

Therefore, real SF networks are subject to diffusion and ‘virus’ prevalence (for example 

those affecting Internet computers). On the other hand, their robustness renders ineffective 

all disinfection attempts based on ‘random’ actions, i.e. attempting to ‘vaccinate’ large 

numbers of nodes taking them more or less at random. The only effective step would be 

the identification of the most connected vertices and their disinfection to interrupt the 

diffusion (Figure 3.10). 

Figure 3.11 Survival probability of an infection for λ=0.065 and N from ~103 to ~106 (top to 
bottom) (after Pastor-Satorras & Vespignani, 2003) 

If an infection has started in a SF network, its survival probability depends on the network 

size (Figure 3.11). 
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3.2.3 Self-organised criticality  

A power law seems to be a peculiar attribute for complex systems ‘far from equilibrium’ 

and with non-linear characteristics. In general, we think of far from equilibrium systems as 

those evolving towards a critical state or phase only if the systems parameters are varied 

from the external. 

The Self-Organised Criticality (SOC) theory, instead, postulates that dynamic systems 

evolve spontaneously to a critical state for a large range of system characteristic 

parameters. The classical example is the one of a sand pile on which new grains are 

dropped. As long as the slope is modest, the addition of new grains does not have 

macroscopic effects - only a few of them will change position. When the pile grows, the 

slope will reach a critical value. At this point, new grains will produce avalanches of 

different sizes. After that, the pile self-organises with a new slope. 

Figure 3.12 The sandpile giving the name to self-organised criticality model (drawing by E. 
Wiesenfeld in Bak, 1996: 2) 

The system goes to a critical state spontaneously, without any external intervention 

(besides the dropping of grains), or without the necessity (typical of other models, phase 

change of water, for example) of an external regulation of system’s parameters. More 

importantly, this critical state shows great robustness to initial state perturbations. This 

robustness renders the SOC a plausible model for the instability of many natural systems. 
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The sandpile model, due to Bak, Tang and Wiesenfeld (1987; 1988) plays an important 

role in statistical mechanics and its self-organisation property seems to be the basis for the 

presence of fractals and background noise (the 1/f noise) in many natural systems (such as 

the flicker noise in electronic circuits) 

Consider a square regular lattice with side L (it will have L×L nodes) to which a rewiring 

process is applied (the network will become small-world), then: 

1. each node i is assigned a threshold zi (≤ ki), for example: zi = ki
1−η (0 ≤ η < 1). Let 

zi be the smallest integer ≥ zi ( zi ≤ ki); 

2. for every time interval a ‘sand grain’ is added to a node i chosen at random. The 

node height (integer) hi increases by 1;

3. if hi reaches or exceeds zi the node becomes instable and the zi grains fall (spill) 

on zi neighbour nodes chosen randomly among the ki, hence: hi → hi − zi and hj

= hj+1 for all other j nodes; 

4. if this causes the instability of any adjacent nodes the process is repeated until there 

are no more instable nodes. This process is called an avalanche;  

5. steps 2÷4 are repeated. 

Now we would like to know the: 

� area of the avalanche: the number of distinct nodes involved; 

� size of the avalanche: the number of ‘spill’ events in a specific avalanche; and 

� duration of the avalanche. 

Numerical simulations show that a system in stationary state, reached without external 

modifications of any parameter, has scale invariance characteristics in the distribution of 

avalanche sizes n(s) and their durations n(t):

n(s) ~ s−τ e n(t) ~ t−δ

More precisely, the size distribution shows an exponential cut-off (sc is the characteristic 

size): 

n(s) ~ s−τ e(-s/sc) 
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Figure 3.13 Size and lifetime distributions for avalanches in small-world networks different 
sizes (L) and rewiring probability p=0.3 (after de Arcangelis & Herrmann, 2002) 

Size and lifetime distributions of the avalanches follow a power law (Figure 3.13). 

The origin of great avalanches that start from an even small perturbation is a phenomenon 

which occurs in many areas of the economy and society. Some of them, such as stock 

exchange crashes, electric blackouts, but also diffusion of ideas, innovations, fashion and 

obsessions, may also be rare, but their size and effects are quite big. 

An example can be the diffusion of innovations (Guardiola et al., 2002; López-Pintado, 

2004; Rogers et al., 2005). A diffusion cycle starts when an individual (a node in a social 

network) becomes spontaneously active by adopting a new product or a new technology. If 

the innovators are strongly connected to a community of vulnerable individuals, the 

percolation process fires up, otherwise the innovation extinguishes after having 

‘contaminated’ only a small number of elements. 

In the study of these events, we are interested in finding the probability that an avalanche is 

initiated by a single (or a very small number) element and the expected size. 

As seen, the condition which produces a large avalanche is the overload of a node (or of a 

link between two nodes) propagating along the network. The capacity of this node is the 

maximum load it is able to bear. In man made networks this capacity can be strongly 

influenced by cost considerations. 
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Suppose that the capacity Ci of node i is proportional to its initial load Li:

Ci = (1 + α) Li for i = 1, 2, ..., N 

where the constant α ≥ 0 is a tolerance parameter and N the initial number of nodes in the 

network. If the network is active, it is in a free flux state as long as α ≥ 0. The removal of 

nodes changes the paths distribution and the load of a node may change. If this increases 

beyond the node capacity, the node fails and its load is distributed among the others. As a 

result, some of them may be loaded beyond their critical capacity and an avalanche starts. 

The subsequent behaviour is determined by the topology of the network. 

Let us consider, for example, a scale-free network, with a degree distribution: 

P(k) ~ k-γ

The damage can be quantified in terms of the relative size G of the largest connected 

component: 

G = N′/N 

where N and N’ are the number of nodes of the largest component before and after the 

avalanche. 

Figure 3.14 Largest component G as function of α in a SF network (squares: random node 
removal, asterisks: removal of highly connected nodes, circles: removal of high load nodes) 
(after Motter & Lai, 2002) 
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Figure 3.14 shows the effect on G of a node removal done randomly or in a targeted way 

(nodes with higher load or connectivity) in scale-free network with γ = 3.

G remains close to 1 for random overloads, it decreases significantly for targeted removals. 

For example, for α = 1 (capacity double of the one at which the system operates in normal 

conditions) G is reduced to 20%. The relative damage is higher for small α values 

Figure 3.15 gives the results for a random homogeneous network (ER). In this case there 

are no avalanches for α ≤ 0.05 which acts as critical value for the process. 

Figure 3.15 G (α) for an ER network (after Motter & Lai, 2002) 

The relation between connectivity and resilience suggests the hypothesis that a global 

avalanche can be initiated only for a window of possible values (Figure 3.16). The 

conditions can be summarised by identifying the following characteristics (Crucitti et al., 

2004a; Motter & Lai, 2002; Watts, 2002): 

� node threshold: if it is too high, no node will ever become active and the system will 

stay stable, independently from the type of connectivity; 

� network sparseness: if the network is sparse (low number of connections), the 

individual thresholds are sparse as well. Only if the density increases does the 

percolating cluster reach a sensible size. Obviously, if the network is sparse, highly 

connected hubs have a disproportionate efficacy in favouring the diffusion; 
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� network density: an upper limit suggests that even densely connected networks can 

be refractory to the phenomenon. For example, in a social network, if any 

individual cares of many others, nobody will start the process. 

Figure 3.16 The window of possibilities for avalanches as function of the average network 
degree and the tolerance parameter. The area included in the two curves is the one of the values 
for which an avalanche is possible in SF and ER networks (after Watts, 2002) 

In conclusion, a system will be subject to global avalanches only if a balance between local 

stability and global connectivity exist. In other words, the phenomenon depends only on 

the structural characteristics of the network and the relationship with the external 

environment only determines whether a triggering event exists. 

3.2.4 Network optimisation 

Watts and Strogatz (1998) have shown how empirically derived small-world networks 

have intermediate characteristics between regular lattices and completely random 

networks. The presence of such networks in the real world leads to the idea that self-

organisation mechanisms may guide an evolution towards networks with SW 

characteristics as a balance in the optimisation of the average separation between nodes 

and in the total cost of connection. A competitive optimisation principle must, therefore, be 

in charge of the formation of a SW network (Mathias & Gopal, 2001). 
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On the other hand, the existence of hubs (and therefore of scale invariant phenomena) is a 

structural component of a SW network and increases the degree of clustering. 

It can be seen that, by optimising a network, it is possible to obtain values C ≥ Cregular and 

L ≤ Lrandom.

The density of a network is defined as: 

1−
=

N
kρ

In real networks, typical values are (see for example Albert & Barabási, 2002; 

Dorogovtsev & Mendes, 2002): ρ ∈ {10-5,10-1}.

We can define an energy function: 

E(λ) = λd + (1-λ)ρ

where d is the distance between two nodes and λ a parameter that controls the linear 

combination of d and ρ .

The normalised number of links ρ is (aij is an element of the adjacency matrix): 
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the normalised distance d is defined as: d = D/Dmax where D (minimum average distance 

between vertices) is: 

∑
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Dmax = (N+1)/3 for a connected network. 
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Minimising E(λ) means minimising distance and number of nodes and imposing that the 

network be connected (Ferrer i Cancho & Solé, 2003).  

The probabilistic algorithm used for the optimisation is known as simulated annealing.

Originally proposed by Kirkpatrick (1983; 1984), it is named after the annealing of a metal 

which is first heated to very high temperature and then slowly and gradually cooled as far 

as a stable, crystalline structure is reached. At high temperatures, the atoms of the metal are 

in a greatly disordered state, therefore the total energy of the system is elevated. To bring 

the atoms to a crystalline arrangement, the temperature must be lowered very slowly; 

otherwise small imperfections in the lattice may be generated with a consequent 

metastability. At high temperature all the energy states are probabilistically possible, while 

at low temperatures the system is, for sure, in states with minimum energy. The heating is 

also used, in physical processes, to settle the atoms of a crystalline lattice after having 

performed operations that may have modified the geometric symmetry of the crystal. 

The method uses the algorithm first proposed by Metropolis (1953). It consists in 

providing each element of the system a certain (random) amount of energy able to move it, 

with a certain probability, from its partial equilibrium state to a better one. It can be seen as 

a way to overcome a local maximum of the cost or energy function to reach a lower 

minimum. The initial energy is gradually reduced during the process. 

Let ∆E be the energy difference between a configuration and the previous one, if the value 

is negative (new state is better) the new configuration is accepted. Otherwise the 

probability that the new state is accepted is distributed as a certain function, for example as 

(Boltzmann distribution): 

f(∆E; T) = e-∆E/T 

T, for analogy with thermodynamics, is called temperature. Its initial value T0 is chosen 

high enough so that the highest number of states can be accepted. Usually, the choice is for 

a value T0 much higher than the standard deviation of the cost distribution (supposed 

normal) as in: 

T0 =-3σc/lnP 
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where P is the probability with which the state should be accepted. At step n, the value of T

is determined such that: 

Tn = α Tn-1 

with 0.8 < α < 0.95. This way the temperature goes down slowly with the subsequent 

iterations. 

A ‘well ordered’ network, in a minimum energy state (ideally null) will also have a very 

low entropy (ideally the minimum possible). 

If pk is the frequency of nodes with degree k (Σpk = 1), given λ, the Shannon entropy H can 

be defined as: 

∑
−

=

−=
1

1

log
N

k
kk ppH

If λ=0 the network is random (ER), if λ=1it is a clique (ρ(λ)=1). 

Figure 3.17 Density (A), energy (B), clustering coefficient (C) and distance (D) as function of λ.
(C shows the clustering coefficient for an ER network, D the normalised distance for a star 
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network d=6/(N+1) and for a poissonian network d=logN/log〈k〉) (after Ferrer i Cancho & Solé, 
2003) 

By looking at Figure 3.17, it can be noted that three sharp transitions exist (marked with 

arrows) for λ*
1 ≈ 0.25, λ*

2 ≈ 0.80 and λ*
3 ≈ 0.95 (see also Figure 3.18): 

� exponential networks with P(k) ~ e–k/ξ;

� scale-free with exponential cut-off with P(k) ~ k-γ e–k/ξ (γ ≈ 3; ξ ≈ 20 and N=100); 

� star networks (λ*
1 < λ < λ*

2) with a central node connecting all others: 

1,1,
11

−+
−

= Nkkk NN
Np δδ . A star network has, rather obviously, the lowest 

distance among vertices all over the graph, with the least number of links.  

Scale-free networks are in the neighbourhood of λ*
1 ≈ 0.25; the cumulative degree 

distribution exponent is γ ≈ 2.0 (the same calculated by Barabási and Albert). Preferential 

connections are a necessary condition. 

Figure 3.18 Entropy H as function of λ. Different network topologies are shown (after Ferrer i 
Cancho & Solé, 2003) 

The edges can be weighted, for example, by assigning a cost. In this case, the total cost 

function is (l = link length, a = cost): 
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If the link weight corresponds to its physical length, the distribution decays exponentially: 
D(l) ∼ exp(-l/l0) .

Figure 3.19 Link length distribution for optimised networks (after Manna & Kabakçıoğlu, 2003) 

The distributions of link lengths after an optimisation process are depicted in Figure 3.19. 

D(l) is normalised for average length 〈l(N)〉 which varies according to 〈N/logN〉µ.

In conclusion, networks with optimised ‘costs’ have the characteristics of many real 

networks: they are small-world, scale-free and exhibit high clustering levels. 

3.2.5 Communities and community discovery 

Complex networks can have modular structures. We have examined, in the past sections, 

possible mechanisms to build up networks so that the main characteristics are in agreement 

with those found in real cases. 
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In analysing a network, on the other hand, one of the tasks that can be accomplished is the 

detection of modular structures that commonly take the name (derived from the social 

sciences field) of communities. The search is important, for example, to reveal social 

structure through their communication patterns, or to study functional connections in 

metabolic and protein networks, or for the optimisation of technological systems (see for 

example Arenas et al., 2004; Danon et al., 2005; Girvan & Newman, 2002; Newman, 

2004). 

From a technical point of view, the problem is one of dividing the vertices of a network 

into a number of dense subsets (sometimes they are needed to be of roughly equal size), 

while minimising the number of connections between vertices belonging to different 

groups. The partitioning of a graph is, typically, a highly computationally intensive 

problem for which several algorithms have been proposed. The situation, here, is 

complicated by the fact that, often, there is no prior knowledge of the number of 

communities to be discovered. Moreover, communities can have a hierarchical structure 

and be, in turn, further divided into subcommunities. 

There is no clear and common definition of a community (Danon et al., 2005), but a 

general characterisation can be of subsets of nodes which are more densely linked, when 

compared to the rest of the network. To measure this effect, a widely accepted quantity is 

the modularity index proposed by Newman and Girvan (2004). 

It is defined as follows: 

∑ −=
i

iii aeQ 2)(

where eii is the fraction of edges in the network between any two vertices in the subgroup i,

and ai the total fraction of edges with one vertex in the group; edges ‘internal’ to each 

group have weight 1 while inter-group links are weighted 1/2. In other words, Q is the 

fraction of all edges that lie within communities minus the expected value of the same 

quantity in a graph in which the vertices have the same degrees but edges are placed at 

random. 
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In a pure random network (ER), as shown by Guimerà (2003), Q can have values much 

higher than expected. This suggests that these networks, that should not have a modular 

structure, actually seem to have one due to fluctuations. 

The community identification methods proposed can be basically divided into two large 

classes. The first one (Arenas et al., 2004; Danon et al., 2005; Girvan & Newman, 2002; 

Newman, 2004; Newman & Girvan, 2004; Radicchi et al., 2004) is based on an iterative 

division (with edge removal) of the network in a number of subgraphs. At each iteration 

some centrality measure (degree centrality, betweenness, shortest path) is calculated and 

the configuration accepted if the new value satisfies some optimisation criteria.  

The second group of methods consists of building up the network, starting by considering 

all the vertices as ‘independent’ and clustering them hierarchically (Jain & Dubes, 1988; 

Scott, 2000). Here, too, the process is iterated looking for the optimisation of the network 

modularity or clustering characteristics.  

A graph can be partitioned also by using spectral methods. As seen previously (section 

2.3.4) the second smallest eigenvalue of the Laplacian matrix λ2 indicates the 

connectedness of a graph and the multiplicity of the 0 eigenvalue equal to the number of 

connected components (Fiedler, 1973). A spectral decomposition starts by considering the 

eigenvector u2 associated with the second Laplacian eigenvalue. This is treated as a one-

dimensional drawing of the graph G (each vertex is assigned the value of its corresponding 

entry in u2). The median of the u2 elements gives a separation of the graph into two clusters 

(Pothen et al., 1990). The process can be repeated for each cluster.8 An optimisation 

criterion helps finding the right decomposition (Donetti & Muñoz, 2004).  

The different identification methods have different characteristics in terms of computation 

time needed and of capacity to effectively find meaningful structures. Moreover, peculiar 

network topologies (trees, disassortative networks, sparse graphs) can affect their overall 

efficiency and suitability to achieve their goal (Danon et al., 2005). 

 
8 The spectrum of the Laplacian of an unconnected graph is the union of the spectra of the disconnected 
components 
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Modularity, local clustering and scale-free topology coexist in many real systems. One 

possible way to explain these circumstances is to suppose that a number of clusters 

combine to form larger clusters, that combine again and so on. Iteratively, a hierarchical 

structure is created (Ravasz & Barabási, 2003).  

3.3 The structure of the WWW 

The World Wide Web (WWW) is, without any doubt, the most important and significant 

phenomenon of the last few years. Its impact on almost all the forms of our social, 

economical and personal life is enormous. The WWW remains basically uncontrolled: any 

organisation, institution or individual can create a website, of any size, with relatively little 

effort. This growth, without any clear rule or centralised control, produces a huge, self-

organising, complex system.9

Furthermore, for its nature, the WWW is easily measurable in terms of nodes and 

connections, and it is no surprise that from the study of the Web topology originated the 

first seminal works on complex network structures (Barabási & Albert, 1999; Faloutsos et 

al., 1999; Watts & Strogatz, 1998). 

The WWW can be described in terms of a large directed graph whose vertices are the html 

documents and whose edges are the hyperlinks connecting one document to another; its 

topology determines its connectivity. 

The study of the Web as a graph is not only intriguing per-se, but it is also of great 

importance in providing ‘practical’ answers to significant problems. First of all the one we 

may denote as visibility, that can be easily translated into the problem of finding functional 

algorithms for crawling (Deo & Gupta, 2001), searching and community discovery 

(Gibson et al., 1998; Newman & Girvan, 2004). These problems translate directly into an 

economic problem, for the definite value acquired by the links in easing the tracking down 

of a website. The connections (hyperlinks) can be seen as a pseudo-monetary unit (Walker, 

2002). 

 
9 This section is a partial edited version form: Baggio, R. (2006a).  
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A copying mechanism has been proposed by Kumar et al. (2000a) to explain the degree 

distribution for the Web. Following them, a new page on a certain topic copies the links 

from those found on existing pages. At time t a new node connects to the others with a 

constant number of directed links and it is randomly connected by old nodes. 

Figure 3.20 In-degree and out-degree distributions for the copying mechanism (after Kumar et 
al., 2000b) 

Arcs outgoing from a node are distributed in this way: destination of link j is taken at 

random with probability p; the node is a destination (has incoming links) with probability 

1-p. The chance that a web page with degree k receives a link is proportional to (1-p)k.

This indicates that the copy mechanism works with a linear preferential attachment and 

gives rise to a power-law degree distribution. Figure 3.20 shows the results of degree 

distribution measurements. 

For the incoming links the distribution is: 

P(kin) = k-2(2-p)/(1-p) 

the exponent varies between 2 and ∞.

Based on these considerations, a general model for the structure of the web space has been 

proposed. The current model is mainly due to the research by Broder et al. (2000), Dill et 

al. (2002), and Flake et al. (2002). 
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The bow-tie model (as it is commonly called) sees the Web as a self-organising, 

self-similar structure, basically divided into three main components: 

� a core of strongly connected nodes (SCC), accounting for almost 28% of the web 

pages in the sample studied, all joined with bidirectional links; 

� a set of pages (IN) mainly connected in a monodirectional way to the SCC. The 

pages in this component (almost 21% of the sample) have outgoing links that reach 

the SCC, but they are virtually unreachable by other parts of the web; and 

� a similar sized (21%) set of pages (OUT) reachable by the pages contained in SCC, 

but whose links are mainly inward bound; i.e. there is always a path from SCC to 

OUT pages, there is no direct connection from OUT to SCC or IN. 

The picture is completed by two more sets: TENDRILS composed by pages (again 21%) 

providing paths from IN pages or to OUT pages without passing through the SCC 

elements.  

Figure 3.21 The bow-tie, a general model for the Web space (after Broder et al., 2000) 

The TENDRILS contain pages that cannot reach the SCC, and cannot be reached from the 

SCC. It is possible for a TENDRIL hanging off from IN to be hooked into a TENDRIL 

leading into OUT, forming a TUBE – a passage from a portion of IN to a portion of OUT 

without touching SCC. To complete the model, there are pages forming a sort of islands 
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disconnected from the other main components (DCC). The general picture, a bow-tie like 

graph, is shown in Figure 3.21. 

The supposed high global connectivity of the Web appears to be not so high. Only in 24% 

of the cases it is possible to find a path between any two nodes chosen at random (Broder 

et al., 2000). The average distance between nodes is ∼16, and it goes down to 6.8 if we 

consider the undirected connections in SCC (Table 3.1). 

Table 3.1 Average distance between web pages 

 incoming links outgoing links bidirectional links 
average distance 16.1 16.1 6.83

The degree distribution, on average, follows a power law P(k) ∼ k-γ. The values of the 

exponent γ are: γ = 2.1 for the in-degree distribution (incoming links to a page) and γ =

2.72 for the out-degree distribution (links outgoing from a page).  

In social network analysis, out-degree indicates expansiveness and in-degree indicates 

popularity. The difference (although small) in the measured distributions may be 

interpreted as a relatively higher tendency to receive links because of their popularity 

rather than opening towards the external world of web pages (a steeper power law means 

that the number of websites with out-degree = kout decreases much faster). 

These values, or values very close to these, have been confirmed by several different 

empirical studies, that confirmed also the value for the web diameter D ∼ 7, and the 

average degree of a node in the Web 〈k〉 = 7 (Pastor-Satorras & Vespignani, 2004).  

3.4 Conclusions 

The topology of SW or SF networks is directly related to the peculiar characteristics of 

their behaviour. Besides the numerous empirical investigations whose measurements are 

shown in Table 2.1, the most important results obtained in this field include the following 

processes (section 3.2): 

� rich-get-richer effects: the accumulation of some quantity (links, but also money or 

knowledge) directly coming from the preferential attachment mechanisms; 
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� robustness: stability of the system to random removal (or failure) of randomly 

chosen elements, therefore a higher capacity to resist cascading failures or 

avalanches of breakdowns; but also  

� fragility: high sensitivity to targeted attacks to the most connected hubs;  

� congestion factors: a random graph, tends to become more and more dense (in links) 

with increasing network size, indicating that these networks will become extremely 

‘congested’ in this limit. For SF networks, however, this congestion factor does not 

depend on the network size; arbitrarily large networks can be considered without 

increasing their congestion level; 

� low internal friction: extent and speed of disease transmission (viruses, but also 

messages, fads, beliefs, knowledge etc.) are greatly improved in a SF or SW network 

with respect to a random ER graph; in some cases it is shown that there are no 

critical thresholds at all for these phenomena. 

Moreover, there exists the possibility of optimising a network topology with respect to 

some specified characteristic (e.g. efficiency or clustering). 

Despite its almost uncontrolled growth, the WWW exhibits a clear structure which is very 

far from the random network one would have expected. This reinforces the idea that self-

organisation mechanisms govern the evolution and the growth of a wide class of networks. 
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4 Theoretical background: industrial economics and 
tourism destinations 

Defining tourism and tourists is a challenging task (Cooper et al., 2005; Jafari, 2000; 

Leiper, 1979; Pearce, 1989; UNWTO, 1999), but the words used by Gunn and Var to 

describe it are enlightening (2002: 4):  

... tourism in its full breadth is much more complicated and for many reasons. First of all, 

tourism itself is an abstraction. It doesn't exist, at least not in the same sense as a residence. 

Tourism is not even a discipline, such as chemistry or geography. Tourism is a field made up of 

many physical, program, and action parts. It is only the pieces of tourism and their aggregation 

that can be planned. Tourism is not under the control of one owner, it has no CEO. It is 

controlled by a multitude of owners, … 

Millions of tourists move every year from their homes and play a part in this non-existent 

abstraction. Their expenditure induces the generation of millions of jobs worldwide and 

contributes significantly to the GNP of many countries. According to the World Travel and 

Tourism Council (WTTC, 2007), the world's tourism industry is expected to contribute 

3.6% to gross domestic product (GDP) in 2007 (US$1,851.2 billion), with a forecast 

growth of 4.3% per annum in real terms for the next 10 years. The sector has provided 

231.2 million jobs in 2007, 8.3% of total employment, with an expected increase to 86.6 

million jobs (2.8% of total employment) in 2017. However we define it, a tourist is a 

person moving to go somewhere, for a certain period of time (see the definition in 

UNWTO, 1995). Their target is a destination.

A destination is a space (a city, a region, a resort) in which the traveller can find the 

facilities necessary for accommodation, entertainment, and transportation, that are 

organised by an intermediary, usually a destination management organisation (UNWTO, 

2002a). The evolution of transportation technologies and of the social conditions that 

initiated the phenomenon of mass tourism, combined with the globalisation of world 

economies has increased the competitive pressure on destination tourism organisations. In 

these conditions, as happens for other industries, companies within a destination tend to 

form bound constellations to better face competitive challenges (Castells, 2000; Krugman, 

1991b; Porter, 1998; Schucan, 1998; Smeral, 1998). 
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The approach followed in this thesis considers a tourism destination as a complex socio-

economic system. This chapter analyses and discusses what the literature recognises as the 

most important models which have been used so far to study such a system. In essence, the 

constellation of specialised companies, organisations and communities gathered into a 

confined geographical location (even if its boundaries are often poorly defined) can be 

seen as a form of industrial cluster or district. Thus the analysis of its structure may draw 

upon the theory of industrial clusters, of their formation mechanisms and their evolution 

(see for example Hjalager, 1999).  

The main models of clusters and networks of companies have been developed by 

investigating industrial sectors, with limited attention to the service sectors of the economy 

such as tourism. Tourism destinations deal with different offerings and have peculiar 

differences with respect to a ‘traditional’ district. The formation mechanisms, the focus on 

the service components, the characteristics of the ‘products’ and the relationship between 

them and the ‘production’ system are some of the peculiarities which make a tourism 

destination different from an industrial cluster. First of all, tourism is essentially a service 

industry in which the ‘product’ (a package) is not well defined and is composed of many 

different elements (Johns, 1999; Sinclair & Stabler, 1997; Wahab & Cooper, 2001). The 

tourist purchases this package in advance and consumes it at the destination. The diversity 

of elements which form the package causes the establishment of a wide layer of 

intermediaries which are an integral component of the same industry (Gollub et al., 2003). 

Therefore, the models of industrial networks and clusters need modification and adaptation 

when tourism is the main object of study (Gnoth, 2002, 2006). 

The first part of this chapter discusses the main approaches to the study of an industrial 

cluster which have been developed in the last 15 years. The main components, their 

interrelationships and their evolution are first described. The advantages, in terms of 

economic benefits, of a networked cluster model are subsequently briefly illustrated. 

These general models constitute a natural introduction to the discussion on the structure 

and evolution of a tourism destination. The second part of this chapter is dedicated to the 

main models used to investigate and understand the behaviour of a tourism destination and 
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its components. Attention is given also to the issues related to the management of such a 

composite system. 

The last part of this chapter combines the network approach (discussed in Chapters 2 and 

3) with this framework (the tourism destination district) and discusses the contributions a 

network thinking approach can provide to the understanding of a tourism destination. This 

intersection between the three traditions: industrial economics, tourism studies and 

network science is finally identified as the theoretical background for the study described 

in this thesis. 

4.1 Industrial clusters, districts and networks 

The idea and the phenomenon of a clustering of economic activities are far from being 

new. As Harrison states (1992: 470):  

From the market towns of medieval Europe (and much of contemporary Africa) to the industrial 

parks, wholesaling districts and shopping centres of any large urban area, it is apparent that 

similar economic activities commonly cluster together in space. 

Fairs, markets and local concentrations of merchants and craftsmen can be traced back to 

the origins of the economic history of the world. In the Middle Ages they provided a strong 

impetus and were a characterising feature of many densely populated areas, above all the 

main cities (Hunt & Murray, 1999; Richardson, 2005; UFI, 2005).  

Concentration effects in general economic or industrial activities have been studied and 

measured in detail. Theoretical and empirical research has found that agglomeration effects 

generally play a crucial role for regional income levels (Brenner & Weigelt, 2001; 

Krugman, 1991a, 1991b), for the attractiveness toward foreign investments (Barrell & 

Pain, 1999) and for the competitiveness of the area in which they occur (Norton, 1992). 

Moreover, economic growth and geographic agglomeration have been found to be self-

reinforcing (Martin & Ottaviano, 2001); concentration of industries increases with growth 

and, by reducing the cost of innovation in the region where the economic activities 

converge, it enhances growth. Even a simple model in which there is no specific 

connection among industries, and labour is not movable across regions (Baldwin & 
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Forslid, 2000), leads to the conclusion that concentration favours the overall growth and 

vice versa. 

An idea at the basis of most literature on industry clustering is that firms sited in a 

geographical area share common ideals, rules and languages so that the social environment 

they form is consistent. Social, cultural and operational contiguity favours the spread of 

tacit information and knowledge among local actors. This constitutes a competitive 

advantage for the participants to the cluster (Morrison, 2004; Norton, 1992) because their 

tacitness makes them difficult to access by elements outside the community. Co-location 

within a concentrated geographical area is a basis for development of other characteristics 

of a cluster. The most important factor for a functioning agglomeration is the formation of 

close ties or alliances among the different actors and the degree of cooperation established 

to improve the competitiveness of the group beyond the incidental (usually external) 

effects that promote the gathering (Andersson et al., 2004; Mishan, 1971). In the last 

decade the clustering of industries has been the objective of a very large number of studies, 

both in advanced and developing countries (Becattini, 1987; Porter, 1998; Pyke & 

Sengenberger, 1992; Saxenian, 1994; Schmitz, 1992, 1998). The idea, with its implications 

for economic development, has also received serious consideration by national and 

international organisations in their role as policy makers (European Commission, 2001; 

OECD, 1996, 2001; UNCTAD, 1998). 

Another theme in the literature of clustering is devoted to the importance of external 

linkages and how they enhance competitiveness and reduce the risk of negative lock-in 

(Giuliani et al., 2005; Humphrey & Schmitz, 2001, 2002). This effect, a kind of close self-

referentiality, has been seen as one of the main deterrents to the achievement of all the 

claimed positive advantages and may explain some of the economic failures in developing 

countries or the decline of well known industrial regions (Hassink & Shin, 2005).  

Alfred Marshall introduced the concept of industrial clustering to the economic literature. 

In his ‘Principles of Economics’ (1920: Book IV, Chapter X) he describes ‘the 

concentration of specialized industries in particular localities’ that gather with a 

constructive cooperation. He establishes a relation between the geographical grouping of 

firms and the benefit from positive externalities associated with their activities. This 
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framework was revived by Italian scholars in the second half of 20th century (Bagnasco, 

1977; Becattini, 1979, 1987) to explain the gap in economic performance between the 

Northeast and Central Italian areas and the Southern regions. The difference was attributed 

to the clustering of industries and their intrinsic capacity to foster innovation in products 

and processes while achieving economies of scale. The idea was further developed by 

French researchers with the concept of milieu innovateur (innovative environment). In this 

meaning, the innovation process is endogenously favoured by a number of factors that 

include not only economic causes but also social, cultural and environmental elements. 

These combined factors contribute to the establishment of a unique set of externalities that 

stimulate innovation and knowledge transfer. Subsequent evolution of this approach has 

considered the effects of the dynamic connection between the milieu and the external 

environment (Aydalot, 1985, 1986; Quévit & van Doren, 1997). 

Two other lines of research contributed to the literature regarding the concentration of 

businesses in a delimited geographical area. One is the work of Porter on strategy and 

competitiveness (Porter, 1990) and the other is Krugman’s proposal of a new economic 

geography (Krugman, 1991a, 1991b). Porter’s analysis starts from an explanation of the 

‘competitive advantage of nations’ which results from the interaction of four main forces: 

� firm rivalry and new entry of competitors; 

� power of upstream suppliers and producers of machinery; 

� threat of substitutive products; 

� factors conditions and demand conditions.  

The combination of these factors guarantees a strong competitiveness to a nation and is 

fundamentally rooted in the structure of its industry. Later, Porter (1998: 78) better 

specified the role of industrial concentrations and their part in the economic environment: 

Today's economic map of the world is dominated by what I call clusters - critical masses, in one 

place, of unusual competitive success in particular fields. Clusters are a striking feature of 

virtually every national, regional, state and even metropolitan economy, especially in more 

economically advanced nations. Clusters are not unique, they are highly typical, and therein lies 

a paradox: the enduring competitive advantages in a global economy lie increasingly in local 

things - knowledge, relationships, motivation. 
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The functional Porterian concept of cluster is similar to the spatial approach used by 

Krugman, who writes (1991a: 5): 

…what is the most striking feature of the geography of economic activity? The short answer is 

concentration. Think of the United States: most of the population of a huge, fertile country lives 

along parts of two coasts and the Great Lakes; within these belts, population is further 

concentrated in a relative handful of densely populated urban areas. As I will document in the 

next lecture, these urban areas in turn are highly specialized, so that production in many 

industries is remarkably concentrated in space.  

This geographic concentration of production is clear evidence of the pervasive influence of 

some kind of increasing returns.  

The agglomeration into clusters is here considered a consequence of the presence of local 

external economies and determined by increasing returns to scale and imperfect 

competition. These two works complement each other. From Krugman’s point of view, 

international trade forces cause a concentration of industries in particular places, while the 

strong interconnections among firms are, according to Porter, a major determinant of the 

competitiveness of a region or a country.  

Many industrial sectors, and tourism above all, show a large prevalence of small and 

medium enterprises (EUROSTAT, 2006; OECD, 2000b; UNCTAD, 1998). This induces 

the need for special attention due to the peculiar characteristics of these companies: limited 

resources and impact in the marketplace, low specialist expertise and narrow competences 

in networking (Gilmore et al., 2001). More contributions to this issue come from a line of 

research born among the regional scientists and investigators of small and medium 

enterprises (SMEs). This addition consists, mainly, in the recognition of the importance of 

the role of public policies and non-market coordination (Scott, 1995, 1998) and the SMEs’ 

tendency towards the integration of public support to the cooperation of the private 

organisations (Schmitz, 1992). The latter strand argues that an industrial district is 

successful when it is embedded in an environment that shares risks across a combination of 

public and private institutions. In this enlarged ensemble, the costs and the development 

efforts for new technologies, training and education of skilled human resources, expansion 

towards new markets and the raising of capital are shared by a network of institutions 

(Humphrey & Schmitz, 2002; Schmitz, 1992, 1998; Schmitz & Nadvi, 1999). This 
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collective efficiency approach, while acknowledging the value of Marshallian local 

external economies, emphasises the fact that these, by themselves, do not give a 

satisfactory explanation of the growth and the competitiveness of an industrial cluster. 

Criticisms of the concept of clusters mainly build on its relatively poor theorisation, the 

many different methodological approaches and on the lack of rigorous testing (Martin & 

Sunley, 2002: 7): 

… the mere popularity of a construct is by no means a guarantee of its profundity. Our 

argument here is that seductive though the concept is, there is much about it that is problematic, 

in that the rush to employ ‘cluster ideas’ has run ahead of many fundamental conceptual, 

theoretical and empirical questions …. Whilst it is not our intention to debunk the cluster idea 

outright, we do argue for a much more cautious and circumspect use of the notion, especially 

within a policy context. 

Moreover, a too heavy dependency on agglomerations based on strong connections among 

the participants may risk a tendency to closeness, which results in an increase in internal 

rigidities and a reduction in the capacity to adapt to external dynamic conditions (Saxenian, 

1994). Geographically bound concentrations may become strongly self-referential systems, 

generating a self-sufficiency syndrome and developing lock-in effects. These can be of a 

functional nature: firms rely heavily on direct relationships with other organisations and do 

not feel the necessity to develop functional areas of expertise (marketing, for example). 

These may give rise to a soundly shared ‘view of the world’ which may lead to 

misinterpretations of market or economy dynamics inducing wrong responses (Grabher, 

1993; Hassink & Shin, 2005). 

4.1.1 Structure and evolution of an industrial cluster 

The numerous contributions to the analysis of industrial agglomerations have led, as seen 

in the preceding section, to different approaches and definitions (Andersson et al., 2004). 

Nonetheless, analysis of the literature indicates some agreement on the basic characteristics 

of a cluster and the crucial factors that contribute to their formation as well as attempts to 

reconcile different interpretations, such as the Italian post-Marshallian school and the 

American geographical school (Belussi, 2004).  
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Industrial agglomerations share a number of common characteristics that have been used to 

describe them (and sometimes to define the concept or the categorisation). Most authors 

(Andersson et al., 2004; European Commission, 2001; Jacobs & de Man, 1996; OECD, 

2001) speak of: 

� spatial (geographical) proximity: firms gather in geographic proximity pushed by 

factors such as external economies of scale, social capital and learning processes. 

The spatial concentration is a distinctive characteristic, even if the concept of 

spatiality may need a deep revision if contemporary communication technologies 

are taken into account (see the discussion on virtual clusters further on in this 

section); 

� multiplicity of actors: clusters and districts do not only consist of firms, but also 

involve public authorities, educational institutions and financial organisations. A 

critical mass is required to achieve the main benefits and to start a dynamic 

evolution; 

� specialisation: clusters are focused on a core activity (or specific industrial sector) 

to which all actors are related. There is a considerable division of work: different 

elements of the cluster dedicate themselves to specific processes or products; 

� collaboration: interconnections exist among the cluster elements, the industrial 

structure and the local institutions. Industrial sectors include the social division of 

labour and links between customer, suppliers and competitors. Local institutions 

and culture contribute to create and sustain regular patterns of social interactions; 

� competition: essentially based on innovation rather than on pure economical bases 

(prices/costs/wages). A dynamic and equilibrated combination of competitive and 

collaborative aspects is probably the most striking characteristic of a cluster; 

� innovation: firms in clusters are continuously involved in processes of 

technological, commercial and organisational change. These processes require, and 

are supported by, effective and efficient means of knowledge creation and 

distribution;  

� institutional support: state, regional or local organisations with a supportive policy 

are thought to be crucial factors for the success of many districts; 
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� life cycle: both the system and the clusters and the initiatives and the activities are 

not temporary short-term phenomena or static ensembles, but are ongoing with 

long-term perspectives, strategies and plans;  

� cultural homogeneity or social embeddedness: a socio-cultural identity that 

promotes trust, reciprocity and social sanction. It stems from the ‘atmosphere’ 

considered by Marshall as one of the main features of an industrial district. It has 

been emphasised mainly by the Italian school (Sforzi, 2000; Sforzi & Lorenzini, 

2002). In this vision a district, or a cluster, is a sociological entity besides (or even 

before) being an economic entity in which the cultural heritage and the historical 

traditions may play a crucial role in strengthening the whole system structure. 

The structural qualities of clusters differ greatly across locations and industries: some have 

a ‘flat’ structure, some exhibit a clear hierarchical shape, some form around a central pole, 

some seem to be characterised by randomly drawn connections (van der Linde, 2003). So 

far, little has been done to explain the cause of structural features of these agglomerations 

and how the network of relationships, a basic ingredient of clusters (Biggiero, 1999; 

Staber, 2001), influence or are influenced by the topology of these systems. More 

importantly, the origins of an industrial cluster are not known although this lack of 

understanding may be because it “is such a complex and serendipitous phenomenon that no 

theoretical approach neither econometric estimation may pretend to fully explain it” 

(Maggioni, 2004: 31).  

As noted above, a common and clear definition of such a cluster does not exist. Broadly, 

three main dimensions have been identified (Jacobs & de Man, 1996):  

� spatial concentration: generally refers to a geographical region in which economic 

activities within specific sectors assemble and a diffuse support (physical or 

knowledge-based) infrastructure forms the connective tissue; 

� production chain: full supply chains (sometimes extended to supporting activities) 

or organisations active in different stages in the production process form the core of 

the cluster; 

� economic or industrial sector: single or combined sectors, defined, rather broadly, 

at a high level of aggregation. 
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Several attempts have been made to classify the main types of clusters observed. From a 

series of studies (Giuliani et al., 2005; Guerrieri & Pietrobelli, 2001; Harrison, 1992; 

Johnston, 2004; Marceau, 1994; Markusen, 1996; Pyke & Sengenberger, 1992) the 

following general taxonomy can be deduced: 

� horizontal clusters: between firms (typically small and medium-sized) in an 

economic sector that both compete and collaborate with each other; 

� vertical clusters: between large firms and their core suppliers; 

� virtual clusters: where physical co-location is not important, or is overcome by 

extensive use of communication technologies;  

� proto-clusters (at times called emerging clusters or by using the name of the 

common base, such as technology or peculiar needs): where firms have a common 

resource base, technology or needs, but in which the system of relationships in 

production and innovation is still at an embryonic stage; and 

� mixed configurations: for example it is possible to identify diagonal clusters, in 

which parts of a vertical cluster are formed by smaller horizontal clusters formed 

by elements of the supply chain. 

Evolution of an industrial cluster 

The dynamic history of industrial clusters and districts has been analysed by numerous 

scholars and is divided into three major phases (Andersson et al., 2004; Maggioni, 2002, 

2004; Schmitz & Nadvi, 1999): 

� an initial stage, in which the cluster is initiated by some (often exogenous) event 

and sustained by a spontaneous diffusion of information about the suitability of the 

location; 

� a second stage, in which the economical drivers of Marshallian agglomeration 

become crucial in sustaining (endogenously) the growth and the structural setup; 

� a third stage, in which a successful cluster attains a leadership in the sector of 

competence, reaches a stable maturity and becomes resilient, i.e. it is able to 

successfully absorb external and internal shocks (economic and/or technological). 

If the cluster does not succeed, it declines and disperses, producing unemployment, 
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migrations or forcing public organisations into heavy interventions to support the 

social environment. 

This typical evolution is well depicted by a classical logistic s-curve (Figure 4.1), in which 

the evolutionary path is given, customarily, as a function of the industrial mass: that is, 

basically the number of firms participating in the cluster. 

The process of cluster development is described as having high internal dynamics and is 

highly path-dependent: the order of ‘entry’ of the different companies matters. The 

production chains arranged within a cluster undergo a continuous rebalancing through a 

series of small adjustments. No central regulatory body seems to govern the system, thus 

being an example of self-organised and decentralised coordination (Belussi, 2004; Belussi 

et al., 2003; Biggiero, 1999; Brenner, 2000; Brenner & Weigelt, 2001). 

Figure 4.1 The life cycle of an industrial cluster 

This recognition of the inherent complexity of these systems has led to a number of 

attempts to use non-linear techniques and models to explain at least some of the 

characteristic features of such agglomerations. Agent-based, cellular automata, or neural 

networks along with game theoretic models have been used to simulate both the emergence 

and the evolution of an industrial cluster (Biggiero, 1999; Brenner & Weigelt, 2001; 
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Fioretti, 2005; Giaccaria, 1997; Maggioni, 2002, 2004; Pontes, 2000; Staber, 2001). So far, 

the results obtained reproduce or reconfirm the empirical findings of the vast catalogue of 

case studies published. Computational simulation approaches are likely to be improved and 

enhanced in the future. Another approach using the recent results of ‘network science’ to 

investigate the structural and dynamic characteristics of an industrial cluster is discussed 

further on in this chapter. 

The main determinants for the development of a cluster are, as seen above, factors 

connected with the entrepreneurial spirit, the location atmosphere and supportive policies. 

However, not all these elements have the same importance or influence. In a review of the 

published literature (almost 400 papers on more than 700 clusters), van der Linde (2003) 

identifies competitiveness as the main measure of industrial cluster success and applies 

Porter’s (1990) framework to the analysis. The results indicate the Porterian factor 

conditions (i.e. resources and infrastructures) as the most commonly reported determinant. 

This is followed by demand conditions, related and supporting industries, the context for 

strategy and rivalry and, finally, other reasons including chance, isolated individual 

entrepreneurs, and early mover advantages (Figure 4.2). The same factors influence the 

establishment of a cluster in a region (Figure 4.3). In this case, however, the importance of 

the other factors is more significant, mainly for what concerns the role of the public 

institutions. 

Figure 4.2 Determinants of cluster competitiveness (after van der Linde, 2003) 
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Figure 4.3 Most important reasons for cluster establishment (after van der Linde, 2003) 

As discussed above, the spatial dimension has been the basis of the concept of an industrial 

cluster since its first appearance. The recent developments in information and 

communication technologies have extended this idea of spatiality, translating it into the 

virtual environment of cyberspace. While traditional causes of clustering are generally 

recognised to be specialisation and geographic proximity, it has been argued that 

organisational proximity plays a significant role in substituting geographic nearness as an 

enabling factor for the formation and development of coordination and knowledge 

exchange (Romano et al., 2001). Advanced management strategies of supply chains and 

customer relationships enabled by the contemporary ubiquitous information and 

communication technologies are the bases for the achievement of added value groupings 

(Ahuja & Carley, 1999; Rayport & Sviokla, 1995). 

The virtual cluster phenomenon is the one of the most significant consequences of the 

development and diffusion of information and communication technologies in the business 

environment. A virtual cluster is formed by an e-business community, composed of 

customers, suppliers, distributors and commerce providers that use shared digital networks 

for establishing collaborative and competitive environments. Common infrastructures, 

cooperation agreements, common business practices, mutual trust, sense of community and 

stability are the main ingredients of a successful virtual cluster (Bönke et al., 2001; Hagel 

& Armstrong, 1997; Jones, 1997; Kwon et al., 2003; Rheingold, 1993). 
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The geographic factor, however, still plays a role even in this scenery. Many such 

groupings, in fact, arise as a technological counterpart of a ‘traditional’ district and then 

develop over the virtual space. This is particularly true for service enterprises and is a 

characteristic of the travel and tourism sector, in which the technological dimension is 

thought to be a crucial determinant for a successful development at all levels: single 

organisation, groups, areas, regions and countries (Antonioli Corigliano & Baggio, 2003; 

Archdale, 1995; Buhalis, 2003; Poon, 1993; Werthner & Klein, 1999). 

A short summary of industrial clusters 

Geographical concentration effects in economic or industrial activities have been 

extensively studied both in advanced and developing countries. Theoretical and empirical 

research has found that agglomeration effects generally play a crucial role for regional 

economies. The sharing of common ideals and practices and constructive cooperation 

among firms make consistent the socio-economic environment they form. This, coupled 

with their external linkages, influences their economic competitiveness and contributes to 

raising the competitive advantage of the country they belong to. 

Functional and spatial concentrations of industries are reputed to be mainly due to the 

presence of local external economies and determined by increasing returns to scale and 

imperfect competition. To these another strand of research has added the recognition of the 

importance of the role of public policies and non-market coordination and of the SMEs’ 

tendency towards the integration of public support into the cooperative forms of the private 

organisations. 

This collective efficiency approach, however, does not provide a full satisfactory 

explanation of the growth and competitiveness of an industrial cluster. Some criticisms 

have also been directed towards these concepts on the basis of relatively poor theorisation, 

too many different methodological approaches and lack of rigorous testing. 

Despite the different approaches and definitions, the literature shows some agreement on 

the basic characteristics of a cluster and the crucial factors that contribute to their 

formation: spatial (geographical) proximity, multiplicity of actors, specialisation, 

collaboration, competition and innovation. The main determinants for the development of a 
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cluster are the factors connected with the entrepreneurial spirit, the location atmosphere 

and supportive policies. However, not all these elements have the same importance or 

influence. The structural qualities of clusters differ greatly across locations and industries, 

so that no common classification schemes exist. 

The dynamic history of industrial clusters and districts has been analysed by numerous 

scholars and is divided into three major phases: 

� an initial stage, commencing the development of the cluster; 

� a second growth stage; 

� a third maturity stage. 

The recognition of the intrinsic complexity of these systems has led to a number of uses of 

non-linear techniques and models to explain their characteristic features. Emergence and 

evolution of an industrial cluster have been simulated with good success, and empirical 

findings have been reproduced and reconfirmed. These computational simulation 

approaches are likely to be improved and enhanced in the future. Another possible 

approach is in using the recent results of ‘network science’ to investigate the structural and 

dynamic characteristics of an industrial cluster. 

Even if the spatial dimension has been at the basis of the concept of an industrial cluster 

since its first appearance, the developments in information and communication 

technologies have, as a significant consequence, extended the idea of spatiality to the 

virtual environment of cyberspace. 

The geographic factor, however, still plays an important role. Many groupings, in fact, 

arise as a technological counterpart of a ‘traditional’ district and then develop over virtual 

space. This is particularly true for service enterprises and is a characterising feature of the 

travel and tourism sector.  

4.1.2 Cluster economics and benefits 

Industrial districts and clusters provide competitive advantages to the firms that take part in 

them. The most commonly quoted benefits are (Belussi, 2004; Storper, 1995): 
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� increasing returns determined by the systemic characteristics of the local group in a 

globalised context; 

� reductions in transaction costs; 

� innovation diffusion and technological development due to the local interactions; 

� reductions in costs by effective learning (by imitation and emulation); 

� benefits provided by the localisation of external economies (specialised labour 

market, local division of labour, specialised suppliers); 

� first mover advantages as of initial geographical specialisation; 

� advantages connected with product diversification and for being customer driven 

organisations. 

Figure 4.4 Marginal and average costs and benefits for new incumbents in a cluster (after 
Maggioni, 2004) 

Costs and benefits are related to the formation of a critical mass of industries. Some 

models have attempted to derive formal relations to locate the optimal size of a cluster 

(Figure 4.4), i.e. the industrial mass which maximises benefits while minimising the entry 

costs (Maggioni, 2004). 

The set of relationships existing among the firms in a cluster or district is one of the main 

factors influencing the economics of the system. The interest in this topic is mainly due to 

the seminal work by Katz and Shapiro (1985) and by Arthur (1989). The essential concept 

introduced by them is the network externality, the idea that additional members of the 
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community contribute to the utility of the whole group increasing, the economic 

advantages for all of them. This is a challenge to the conventional use of decreasing returns 

and confers a primary role to economies of scale. 

From the supplier point of view, the externalities are demand-side economies of scale; as 

the value of the network increases, the price that consumers are willing to pay rises. This 

situation may lead to some risks. As has been noted (see for example Sääskilahti, 2005; 

Shy, 2001), if we consider two competing clusters and there is an incompatibility between 

the products offered by the two, consumers may become locked-in. This lock-in generates 

a switching cost, which reduces incentives for price reductions and ‘freezes’ customers. In 

order to convince consumers to switch networks, a firm must find some means of 

compensation for the lost benefits of the rival system. In other words, a perfect 

compatibility reduces specific strategic values. Consumers do not discriminate between 

firm-specific networks, but can differentiate between products in terms of brand or quality. 

Although criticised by some researchers (Liebowitz & Margolis, 1994) the concept has 

been used innumerable times to describe and forecast the economic behaviour of a system. 

Digital virtual clusters experience an amplification of these effects mainly due to the fact 

that the digitalisation of goods has a very low marginal cost. Therefore, the system 

undergoes huge economies of scale, so that even in the case of lock-in, the switching costs 

are very low or non existent. 

It must be noted that, from a structural point of view, the traditional model of network 

externalities assumes that each network actor is connected to everyone else; the links form 

a complete graph. An added member increases the utility of all of the network elements. 

That is to say that the value of the network follows the so-called Metcalfe’s Law (Gilder, 

1993; Metcalfe, 1995): the value of a network increases as the square of the number n of

the network elements. It is proportional to n(n-1) ∼ n2 (assuming the benefit for each link is 

normalised to 1 unit of utility). 

This homogeneity is not found in many real world networks (see Chapter 2). In a real 

social network, typically, some actors have more contacts than others, and some relations 

are more important than others. The asymmetry of the network topology is usually absent 
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in the network externalities literature. The hypothesis of a complete graph eases the 

analysis, but it may lead to an incorrect estimation of many characteristic parameters of the 

network, above all its value. As an example, Sääskilahti (2005) studies size and topology 

effects on monopoly pricing. The result is that the topological effect dominates the size 

effect, and the monopolist incorporates the topology in its price. Therefore, asymmetric 

topologies produce distribution surplus effects due to the monopoly’s pricing strategy. 

Moreover, when networks derive their characteristics from specific physical assets needed 

to support it (the roads in a transportation network, for example), bottlenecks (a bridge in a 

transportation network) may exist and the ‘owner’ of the bottleneck asset is able to 

exercise monopoly power. 

Other important phenomena are greatly affected by the topology of the district network. 

These may concern general diffusion processes (Balázs et al., 2005; López-Pintado, 2004) 

such as the diffusion of knowledge (Chen & Hicks, 2004), in the proto-forms of rumours 

or fads (Grönlund & Holme, 2005; Zanette, 2002), basic information (Watts, 2002; Wu et 

al., 2004), technology innovations (Guardiola et al., 2002) or policy issues. The latter are 

of great importance, mainly for public institutions seeking ways to promote or sustain a 

cluster. For these the mechanisms presiding over the formation of opinions or the building 

of consensus are critical; so is the optimisation (or the possibilities of optimisation) of the 

topology towards these mechanisms. In this area too, the topology of the set of actors and 

ties plays a significant role (Laguna et al., 2005; Sobkowiz, 2003). In examining the life 

cycle of an industrial district, its robustness or resilience is a crucial characteristic. The 

capacity to absorb internal or external shocks can determine the survivability of the 

network and these characteristics are strictly related to the shape of the network (Crucitti et 

al., 2003, 2004b; Kogut & Walker, 2001; Pastor-Satorras & Vespignani, 2003). 

Basically, all of the results discussed in Chapter 2 can be applied to the study of an 

industrial district, deriving explanatory models for the observed behaviours or indications 

for action in specific conditions. This has been applied in several situations, and, 

conversely, the analysis of several networks has led to the construction or the verification 

of the models.  
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4.1.3 Clusters and districts 

In the preceding discussion, the terms cluster and district have been used almost 

interchangeably. However, the two concepts have a fundamental difference. This can be 

seen in the words of the two most influential scholars in this field. 

According to Porter (1990), industrial clusters have a central role in guaranteeing the 

competitiveness of a country. His analysis is based on the idea that a nation’s economy is 

made of a mix of clusters whose conditions and evolution directly affect the state of the 

economy. The idea of cluster is therefore expressed as (Porter, 1998: 78): 

… geographic concentrations of interconnected companies and institutions in a particular field. 

Clusters encompass an array of linked industries and other entities important to competition. 

They include, for example, suppliers of specialized inputs such as components, machinery, and 

services, and providers of specialized infrastructure. Clusters also often extend downstream to 

channels and customers and laterally to manufacturers of complementary products and to 

companies in industries related by skills, technologies, or common inputs. Finally, many 

clusters include governmental and other institutions - such as universities, standards-setting 

agencies, think tanks, vocational training providers, and trade associations - that provide 

specialized training, education, information, research, and technical support. 

The basic feature characterising an industrial cluster is belonging to a common specific 

sector; the participating firms are connected by horizontal or vertical relationships and 

concentrated in a geographical area. They may be complemented by some ‘external’ 

entities such as the public institutions. The focus, however, stays on the entrepreneurial and 

business dimension. 

On the other hand, the vision of the Italian school interprets a district as an overcoming of 

this specialised spatial concentration idea. As Becattini (1990: 38) writes: 

I define the industrial district as a socio-territorial entity which is characterised by the active 

presence of both a community of people and a population of firms in one naturally and 

historically bounded area. In the district, unlike in other environments, such as manufacturing 

towns, community and firms tend to merge. The fact that the dominant activity is an industrial 

one differentiates the industrial district from a generic ‘economic region’. Self-containment and 

the progressive division of labour which occurs there bring about an increasing surplus of final 

products that cannot be sold in the district. There follows an ever-increasing problem of placing 
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this surplus on the external - essentially world-wide - market. Such a condition for the survival 

of the district (the necessity of solving an ever bigger problem of final demand) excludes the 

possibility of accidental placing of the products of the district on the external market, and 

requires instead the development of a permanent network of links between the district and its 

suppliers and clients. Thus, an economic definition of the industrial district which aims at being 

comprehensive will have to add such a permanent network, and all its interactions with the other 

elements, to the above-mentioned ‘local’ conditions. 

The contrast with the Porterian vision is significant. In both there is a focus on ‘industries’, 

but in Becattini’s vision there is a full recognition of the importance of the social 

environment of the area in which the district works and, perhaps more important in this 

globalisation age, the understanding of the role of the linkages with the ‘external’ world. 

Moreover, the firms in a district (often with the help of regional governments and trade 

associations) intentionally network with each other to solve problems of cycles and over-

capacity and to respond to new demands for flexibility. This approach seems to be much 

closer to what the reality of these agglomerations is and much more suitable as a 

framework for the study of a tourism destination. 

Based on these considerations and the analysis of the literature (see also the list in Belussi, 

2004), the following definition can be used for an industrial district: 

A spatially contiguous group of interconnected companies, linked by commonalities and 

complementarities, involving a localised support infrastructure, with a collective vision for 

economic and social growth and based on competition and cooperation. 

4.2 Tourism destinations  

Classical economic theory describes a market sector in terms of demand and supply and of 

the factors that drive their behaviour. For a tourism system these basic components are 

identified in the potential or actual visitors and their destination, which is the goal of their 

travel (Cooper et al., 2005; Gunn & Var, 2002). The growth of the economic outcomes 

from tourism activities has brought to the attention of researchers and practitioners the 

ensemble of actors and resources generating these outcomes. The destination, as main 

target for a tourist, has always been recognised as important, and has been termed the 
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raison d’être for tourism, the reason for travelling (Cooper et al., 2005: 77). However, this 

concept has become a central one in tourism only in the last decade.  

The development of the general economic, social and technological environment of the 

world has radically modified the attitude towards ‘leaving the usual place of living’. A 

wider diffusion of information, less expensive travel costs, more disposable free time and 

higher cultural levels have all contributed to the increase and diversification of the basic 

motivations for travelling and have greatly enlarged the possibility of choice of the 

ultimate goal for a trip (Schucan, 1998; Smeral, 1998). This has had significant 

consequences on the supply side of the tourism market. In order to benefit from the 

economic outcomes of travelling visitors, organisations and firms have had to increase 

their efforts to promote and sell their products, basically reinforcing marketing activities, 

striving to enhance differentiation and focusing on customer service and care. Tourism 

enterprises are mostly small and medium sized organisations and therefore these external 

forces have imposed the formation of close collaboration relationships among many of 

them in order to take advantage of the benefits of such agglomerations and achieve 

competitiveness (see section 4.1.2), which is in many cases essential for their survival 

(Smeral, 1998). The process has, thus, led to the formation of different kinds of clusters of 

independent supply operations, in which interdependent networked structural forms have 

emerged (Mill & Morrison, 1992; Urry, 2002). The tourism destination has, as a 

consequence, assumed a central role in the field.  

This, obviously, raises an issue on the meaning of this concept and on the usefulness and 

importance for the study of tourism as an economic and social phenomenon. As Framke 

writes (2002b: 1): 

One of the most used words in the field of tourism is destination – used in marketing, planning 

and development, and general research. One can find it in tourist guides, brochures and 

homepages, and, of course, in all kinds of textbooks and readers in tourism. So it is obvious that 

one should be suspicious. How can one word contain so many of tourism’s aspects? 

Investigating the use of the word shows various ways of using it. The word has no unique 

content, its meaning depends on ones’ purpose, be it describing, communicating or analysing 

tourism. By taking a geographic perspective one will evidently recognise the differences: 

‘destinations’ can be found in various dimensions and on various regional levels: there exist 
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static destinations in connection to one’s stay at a certain location; and there exist dynamic 

destinations, where movement is the motive for a vacation; you can find destinations connected 

to networks and other relations in the industry, and so on.  

And some even contend more strongly that the concept itself could be wrong. For example 

Leiper (2000a: 366) asserts: 

There is no evidence that any destination ever attracted, in a literal sense, any tourists. […] The 

main causal factors of tourist flows are not located in destinations but in traveller generating 

regions, in places where trips begin, where the forces that stimulate tourists’ motivations are 

located and where marker systems directing tourists to nuclear elements of attractions begin. 

However, the successful outcomes in terms of economic and social development of many 

regions in the world do not indicate that the destination is just an abstract idea. Also the 

theoretical framework of the agglomeration of industries in districts and clusters discussed 

above, gives us a stronger reason to analyse these ‘objects of study’. The many different 

approaches to the study of a destination have generated a number of different definitions. 

Obviously, they do not always agree.  

The initial idea of tourism destination is closely bound to the geographical characteristics 

of a destination. The first attempt to define it is attributed to Georgulas (1970, quoted in 

Framke, 2002a: 95): 

Tourism as an industry occurs at ‘destination areas’ – areas with different natural and/or man-

made features, which attract non local visitors (or tourists) for [a variety of] activities. 

The influence of the research on industrial agglomerations, however, led to the realisation 

that a purely geographical approach was not fully adequate, nor able to represent the 

richness and the complexity of a tourism destination. None of them have been fully 

satisfactory mainly because of the difficulties in fully outlining the ‘product’ provided or in 

characterising the components of the tourism market or the belonging to ‘tourism’ of the 

many diverse economic activities. Therefore, the interrelationships between the tourism 

phenomenon and exogenous economic, social, and environmental issues have led to 

numerous attempts to define a destination. 
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The UNWTO Working Group on Destination Management (2002a) has proposed the 

following definition: 

A local tourism destination is a physical space in which a visitor spends at least one overnight. It 

includes tourism products such as support services and attractions, and tourism resources within 

one day's return travel time. It has physical and administrative boundaries defining its 

management, and images and perceptions defining its market competitiveness. Local 

destinations incorporate various stakeholders often including a host community, and can nest 

and network to form larger destinations. 

This definition addresses many of the issues raised above. Many different elements are 

contained in this definition. Specifically, it contains a characterisation of the basic elements 

of a tourism system (the companies, the product, the tourist). The effort to overcome the 

pure geographical characteristic is evident. Apparent is also the attempt at recognising a 

number of factors which contribute to the standing of destination: not only firms, but also 

the local social community and the influence of a managing entity. These well conform to 

the idea of district envisaged by Becattini and his followers (see section 4.1.3). 

4.2.1 The tourism destination as an industrial district 

Under the pressure of competitive rivalries, as discussed in section 4.1.1, companies tend 

to cluster and to form agglomerations of interconnected entities in a specific geographic 

region. Joint efforts and cooperation are increasingly common practices in virtually every 

industry sector. A tourism destination, in first approximation, may be considered an 

example of such a cluster. 

The mutually dependent attractions, services, transportations, and environmental or 

cultural resources emphasise the need for collaboration. This is mainly driven by the 

demand-side. In fact, as Gunn states (1997: 108): “A traveler is more likely to seek the 

great diversity and volume of services when they are located together. And businesses in 

such clusters benefit from local as well as travel trade.”  

Destination clusters generally establish spontaneously and evolve and change over time, 

driven by both internal and external factors. They are not isolated entities, but open 

systems with complex linkages to a number of similar or diverse other systems. The 

development of new competitive products and services is very often done in cooperation 
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with other ensembles, and the interface between different agglomerations allows the 

creation of new value (Nordin, 2003: 19): 

As a matter of fact, cluster development often becomes particularly vibrant at the intersection of 

clusters, where insights, skills, and technologies from different fields merge, and as a result 

spark new business. Moreover, the diversity of learning stimulates innovation. 

The concept of tourism destination implies a systemic approach in tourism studies – an 

approach in which the main focus is given to the activities and the strategies to foster the 

development of an area pictured as a system of actors cooperating in order to supply 

integrated tourist products.  

The literature on tourism destinations can be divided into two main strands: the first 

considers principally the marketing and promotional side of the concept, with the aim of 

pushing the competitive development of a destination (see for example Buhalis, 2000; 

Dwyer & Kim, 2003; Ritchie & Crouch, 2003). The second one confronts the scheme from 

a structural point of view, using the cluster or district lenses to describe the characteristics 

and functioning of such systems (Antonioli Corigliano, 1999b; Hjalager, 1999; von 

Friedrichs Grängsjö, 2003). 

This is the approach taken by Nordin (2003), which starts from the Porterian idea of 

response to competitive pressure. The four forces diamond model is used to describe a 

cluster of tourism enterprises, and emphasis is given to the role of innovations. Nordin 

(2003) stresses the need to develop collaboration and cooperation strategies to gain a 

sustainable competitive advantage. This Porterian methodology, however, has been subject 

to a number of critiques that look especially valid when the scheme is transferred to the 

tourism sector. These criticisms include the lack of specificity and measurability (Martin & 

Sunley, 2002) and more importantly it can be noted that the model fails to recognise the 

influence of the public sector and of groups or associations with different interests. This is 

particularly true in tourism, where government interests (central or local) are highly 

influential (Stopford & Strange, 1991).  

The complex nature of an agglomeration of industries such as tourism businesses and the 

difficulty of stating a delimitation of a geographical or sectoral nature makes the analysis 

more difficult. The tourism industry is a very heterogeneous sector, including such diverse 
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segments as accommodation, intermediaries, transportation, marketing and others (Leiper, 

1979; Mill & Morrison, 1992). Moreover, it has strong linkages to other related and 

supporting industries or groups, necessary to satisfy the demands of the customers, so that 

it can be extremely difficult to draw clear boundaries between clusters. Tourists, besides 

the destination attractions and services, value several other factors such as safety, security, 

cleanliness of the environment and traffic. People travel for immaterial cultural reasons 

that are beyond the logic of supply and demand. The competitive advantage of an area is 

increasingly related to the whole system of local actors providing a very complex final 

product (Keller, 1996; Urry, 2002; Vogt et al., 1993). 

To achieve competitiveness and development goals, the promotion of industrial clusters is 

just one of many possible strategies. Even if a region has some successful clusters creating 

prosperity and employment, it might be worth considering that clusters go through life 

cycles and face decline. Therefore, strong regional economies should be able to 

differentiate and count on more sectors to foster their development (Storper, 1997).  

On the other hand, the idea of a tourism district (see section 4.1.3) can be a more useful 

framework to interpret the phenomenon. It can be seen as an ideal model for the 

development of a system which encompasses a number of different enterprises focused on 

tourism, whose activity is able to generate wealth, occupation and wellbeing for the local 

community by exploiting and enhancing the local resources. As in the industrial district 

model, travel and tourism industries, generally of small and medium size, live in a 

common area and are characterised by linkages of different strength among themselves and 

with the local community. Moreover, the intervention of public sector institutions is 

essential in giving policy guidance and support and in managing a large part of the 

resources that are public goods such as culture, environment, lifestyles, and so forth. 

Hjalager (1999) indicates that a flourishing tourism destination shares the main 

characteristics of a successful industrial district: 

� interdependence of the participating firms; 

� cooperative competition, and trust in sustained collaboration;  

� a ‘community culture’ with supportive public policies; 
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� a global market faced by an SME-based economy with main specialisation in one 

sector; 

� an extended vertical interdependence with detectable numerical and functional 

flexibility; 

� tendencies towards the establishment of supportive public and semi-public policies 

and institutions. 

There are differences for which the district model needs some adaptation. First of all, the 

‘product’ has peculiar characteristics: it is mainly a service product, whose intangibility, 

inseparability, heterogeneity and perishability make it rather different from ‘usual’ 

industrial goods (Vanhove, 2005). In addition, the acquisition and consumption of the 

tourism product is typically separated by space and time so that potential visitors are 

unable to fully assess product attributes prior to consumption (Burns, 1999; Cooper et al., 

2005; Mill & Morrison, 1992). 

The district interpretation of a tourism destination considers it as formed by two main 

classes of interacting components (Antonioli Corigliano, 1999a, 1999b, 2000; Capone, 

2004; Lazzeretti, 2003; Stamboulis & Skayannis, 2003):  

� a large endowment of resources: natural, cultural, artistic, but also artificially built, 

such as museums, theme parks or sport complexes;  

� a network of groups of actors: economic, non economic and institutional, whose 

prevalent activity is providing tourism related services to visitors and travellers. 

The stakeholders of a destination district include, in the tradition of the Becattinian school, 

not only those whose core activity is ‘tourism’ as it would be in a Porterian cluster, but also 

the local social system, the various institutional entities (local or country governments, 

associations etc.) and other organisations whose activity, although not directly of touristic 

nature, are deemed essential for the good functioning of the system as a tourism 

destination. Even the geographical delimitation can be somewhat relaxed since, as seen 

above, virtual groupings with entities external to the specific area can be established, thus 

overcoming the need for a strict physical proximity. 
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This enlarged definition takes into account the categorisation of the tourism supply side 

made by Smith (1988: 184) of Tier 1 and Tier 2 businesses: 

Tier 1 commodities are basically ‘pure tourism.’ Businesses that provide Tier 1 commodities, 

such as airlines, would cease to exist if there were no travel. Tier 2 commodities, on the other 

hand, are ‘mixed’ commodities. These are provided by businesses such as restaurants that serve 

both travelers and residents. Tier 2 businesses would continue to exist if there were no travel, 

but they would exist at a substantially reduced level. 

And, as Capone notes (2004: 8): 

Regarding the networks of actors, in the Industrial districts literature, there are two main pillars 

at the base of an industrial district: 

• the productive organization; the system of enterprises localized and specialized 

that work with a flexible division of labour; 

• the social and institutional local environment.  

Figure 4.5 A model of a tourism district comprising clusters of diverse industries, associations 
and public government bodies interlinked and embedded in a ‘social’ territory endowed with 
different resources. Virtual links can tie some of the internal clusters to external groups 

With this reading, a tourism destination is a complex system formed by a number of 

interconnected subsystems (see also McKercher, 1999). Each one of these can be a cluster 

of firms with a particular specialisation. All work together towards the social and economic 

development of a certain territory which, generally, has definite administrative boundaries, 
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though some may be tied to external actors or groups forming virtual connections. Tourism 

related activities are the prevalent task of the whole system (Figure 4.5). 

4.2.2 The management of a tourism destination 

A tourism district, in the meaning given in the previous section, is a complex structure 

made of different types of organisations which are competing and collaborating in their 

operations. The dialectic relationships among the components of this system make it a 

peculiar one. Probably the most important issue, well emphasised by most parts of the 

literature on this topic, is the tension between different stakeholders’ interests. As Buhalis 

(2000: 98-99) notes: 

Perhaps, the most difficult problem is ensuring the rational use of zero-priced public goods, 

such as landscapes, mountains, and the sea for the benefit of all stakeholders and at the same 

time preserving the resources for future generations. Conflicts can easily develop, especially 

when some (perhaps greedy) stakeholders exploit resources for short-term benefits. A 

compromise encompassing all these interests is extremely difficult if not impossible, but is the 

key to long-term success. 

It is a common theme in the tourism literature that a destination management problem 

exists. In other words, the achievement of the benefits generated by tourism in a particular 

region requires a process in which some entity takes the responsibility of guiding the 

activities of the different stakeholders.  

The literature stresses the idea that the main task of a management entity is to foster the 

tourism system in an area by looking at the long-term prosperity and wellbeing of the local 

social community, while maximising the economic profitability of the operators involved 

and ensuring a sustainable balance between economic benefits and socio-cultural and 

environmental costs. Obviously, this comprises the demand part of the sector. Therefore 

one added objective is the overall satisfaction of the tourists and visitors coming to the 

destination (Buhalis, 2000; Framke, 2002a; Ritchie & Crouch, 2003; Ritchie & Ritchie, 

2002).  

Management can be achieved by having some regulatory mechanism and some 

coordinating unit that takes care of harmonising public and private needs and actively 

works for the promotion and marketing of the destination as a whole: a destination 
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management organisation (DMO). This will try to achieve the objectives stated above -

coordinating a strategic planning approach and involving all the stakeholders of the 

destination. 

For the importance of tourism activities, from both the economic and social point of view, 

and for the peculiar characteristics of the sector, a DMO is generally a government driven 

organisation and its main tool is the power of issuing policies, guidelines or rules, although 

with some important shadings. It has been noted, in fact, that in today’s political and 

economic environment, the role of government in tourism has radically changed, shifting 

from a traditional public administration model, trying to put into operation policies for the 

public good, to a different model, closer to a liberistic view of markets stressing efficiency, 

returns and effective partnerships (Hall, 1999; Hall, 1993). 

Efficient and effective destination management aspects can increase the appeal and 

improve the quality and value of the resources (Ritchie & Crouch, 2003). Moreover, 

successful management practices can contribute to the generation of satisfaction among 

both tourists and the local community by adopting shared marketing strategies. These 

include a careful monitoring of tourist activities and satisfaction levels and of the hosts’ 

reactions to tourists. Considering these as criteria for success, rather than just tending to an 

increase in the numbers of tourists, allows a sustainable development of the infrastructure 

of tourism areas (Ryan, 1991).  

Managing these processes is particularly challenging for the fragmented nature of the 

tourism industry and for the possible conflicts that may arise from the different views, 

values and attitudes held by the diverse components of the district. This, as has been noted, 

indicates the necessity of recognising common elements and of favouring effective transfer 

of information among the different stakeholders (Bramwell & Lane, 2000; Font & Ahjem, 

1999; Ritchie & Ritchie, 2002). Also crucial is the capability of setting effective and clear 

means to evaluate the impacts (real or potential) of tourism developments and to formulate 

a widely agreed mission and strategic vision. 

Managing the complex system called a destination is quite a challenging task, because it 

also means finding the way to ‘direct’ a complex system which, almost by definition, is 



- 136 - 
 

quite unmanageable. It corresponds, essentially, to finding a control structure able to 

produce order by inducing certain relations among its elements with the effect of reducing 

the indistinguishability of the states of the system (see section 2.1). Seeking stable 

equilibrium relationships is considered detrimental to the development of a system; 

evolution and growth can only be possible in regions of the phase space at the boundary 

between order and chaos (Rosenhead, 1998: 3.1): 

Rather than trying to consolidate stable equilibrium, the organisation should aim to position 

itself in a region of bounded instability, to seek the edge of chaos. The organisation should 

welcome disorder as a partner, use instability positively. In this way new possible futures for the 

organisation will emerge, arising out of the (controlled) ferment of ideas which it should try to 

provoke. Instead of a perfectly planned corporate death, the released creativity leads to an 

organisation which continuously re-invents itself. Members of an organisation in equilibrium 

with its environment are locked into stable work patterns and attitudes; far from equilibrium, 

behaviour can be changed more easily. 

For a tourism destination, as well as for other types of organisations, it is possible to adopt 

the idea (Stacey, 1993, 1996) that systems do not only adapt to their environments, but 

help to create them. Their success can come from contradiction as well as consistency. 

When contingency (direct and linear cause and effect relationships) loses its full validity, 

long-term planning is almost impossible. Success may stem from being part of a self-

adapting process, rather than from an explicit ‘vision’. Revolutionary as well as 

incremental changes may form the basis to build organisational success. 

Despite these difficulties, it is still possible to manage and understand complex systems, at 

least at some level. Large scale behaviours might still be foreseeable if it is possible to 

describe the overall dynamics of the system including the presence of any attractors and 

their basins (see section 2.1). This can be accomplished by using a number of modelling 

approaches mainly based on numerical simulation models. 

Once the attractors of these complex systems have been identified, it can be possible to 

determine whether changes in some control parameter can produce sudden shifts in 

behaviour, or at least establish a probability distribution for their occurrence (Hansell et al., 

1997). Simulation methods prove the feasibility of this approach (Smith & Johnson, 2004). 
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Short-term predictions allow identification of the main evolutionary paths and small 

‘corrections’ to the system behaviour that may be effective in avoiding undesired regimes. 

Managing a complex system requires, therefore, an adaptive attitude, rather than a rigid 

deterministic, authoritarian style. It may require the adoption of strong rules, but it 

definitely needs the capability to change them dynamically, reacting in short times to all 

the changes that may occur in the system and in the external environment. The proposal of 

using adaptive management to deal with a system derives from the work of 1970s 

ecologists (Holling, 1978). It calls for an experimental path to management. The method 

builds on the idea of exploring alternative possibilities, implementing one or more of them, 

monitoring the outcomes, testing the predictions and learning which one most effectively 

allows the achievement of management objectives. The cycle then closes by using the 

results of the actions to improve knowledge and adjust subsequent management activities. 

Since then, it has been adopted in different situations, including tourism systems, with 

encouraging results (Farrell & Twining-Ward, 2004). For example, Agostinho and Teixeira 

de Castro (2003) analyse a Brazilian experience and bring tangible data showing that an 

adaptive, self-organising management system produces better performance with respect to 

more traditional schemes. Bankes (2002) convincingly uses computerised agent base 

methods to work out different scenarios in order to support the development of policies in 

complex and uncertain conditions. 

4.2.3 Structure and evolution of a tourism destination 

Although quite a large number of works have been devoted to the study of a tourism 

destination, there is no sound theoretical description of its structural characteristics. This is 

clearly due to the difficulty of defining a tourism district and all the elements that compose 

it and the same ‘idea’ of tourism. Most of the analyses on the structure of such systems can 

be found in the literature dealing with the attractiveness, the competitiveness and the 

marketing of a tourism destination. They are used as an explanatory framework to stress 

the importance of certain kinds of activities or processes and to discuss the benefits that 

may derive from them. 

Figure 4.6 and Figure 4.7, for example, show some well known models (Dwyer & Kim, 

2003; Heath & Wall, 1992; Ritchie & Crouch, 2003; Viganò, 2004).  
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Figure 4.6 Tourism destination models (adapted from a: J. R. B. Ritchie & Crouch, 2003; b: Heath 

& Wall, 1992) 
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Figure 4.7 Tourism destination models (adapted from c: Dwyer & Kim, 2003; d: Viganò, 2004) 
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Even with different graphic styles these models look rather similar from a structural point 

of view. What can be noticed is the presence of a mixture of ‘physical’ (stakeholders, 

infrastructure, resources) and ‘conceptual’ (processes, activities, behaviours) elements. 

Even if nothing (or very little) is said about the structure and the type of connections that 

bind the different elements, one may imagine that these elements are subsystems composed 

of a number of stakeholders connected by a web of linkages.  

Also when new approaches are invoked to better understand the functions and behaviour of 

a tourism destination, such as in an analysis by McKercher (1999) derived from 

complexity and chaos theory, the structure (Figure 4.8, see also section 2.1) is described 

only at a very high level, by showing a classical scheme in which structural considerations 

are almost absent. 

Figure 4.8 McKercher’s model of a tourism system (adapted from McKercher, 1999) 

As discussed in Chapter 2, the topology of a network (a tourism destination network, in our 

case) is not just a curiosity, but a fundamental property that may greatly influence the 

overall dynamic behaviour of the system and explain and control a number of processes 

from the diffusion of ideas to the robustness to external or internal shocks, to the 

optimisation of the relationships among the network components. The networked structure 

of a tourism destination and its importance has been acknowledged by several authors. 
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Considering the set of relationships is deemed a remarkably appropriate approach to 

describe these systems and to give better insights into the whole industry and its 

coordination and organisational structures (Tremblay, 1998). 

The simple existence of a network in a tourism district is not sufficient to generate 

effective synergies, it is the structure of such networks that is thought to be a crucial 

determinant (Michael, 2003). The existing theories and research on the relationships 

between competing and cooperating firms in a tourism destination support a confirmation 

of this role. In a tourism environment where many and diverse small companies operate, 

the overall success of the destination is more often found when firms interact more 

frequently both at a formal and an informal level. Furthermore, efficient information 

transfer and cooperation in marketing activities or in sharing the knowledge about the 

‘paths’ their tourist segments take through the destination strongly influence a destination’s 

success (Gnoth, 2004). 

Multiple ranges of network types exist; they can be categorised according to type of 

organisation, configuration of interorganisational connections, degrees of formality, or 

level of intensity of the linkages between members. The success of such networks (in terms 

of economical and social benefits achieved) depends on a number of different factors: 

clarity of objectives; organisational structure and leadership; capabilities to manage 

human, financial and physical resources; and participation of the members. Most of these 

benefits are difficult to quantify. The evaluation of their qualitative aspects can be very 

complex, but these benefits are deemed important to fully understand the characteristics 

and functioning of social groups (Dredge, 2005; Rhodes, 2002). All things considered, the 

many examples studied confirm a clear relationship between the success of a destination 

and the structure of the network of its stakeholders. This is valid also for ‘virtual’ tourism 

networks, those that include elements not necessarily geographically close, but spread on 

an international basis and connected by a common vision and an efficient exchange of 

information and knowledge (Morrison et al., 2004). A series of cases show that: 

the networks generating the greatest range of benefits were those that had embedded a system 

and a culture to sustain inter-organisational learning and knowledge exchange (Morrison et al., 

2004).  
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The role of the network structure as a mechanism for transferring information among its 

elements strongly affects coordination and managerial processes. According to Pavlovich 

(2001: 495), it: 

displays the overall properties of the group; the relational systems within the network 

determines who get what, through the scope and intensity of individual relationships. 

The position and connectivity of the single organisation influence the consequences of its 

actions, and efficient information transfer fosters the capability of the network to 

implement self-regulation mechanisms. Elements whose actions are perceived as contrary 

to the general interest are cast out and put in a peripheral position (Pavlovich, 2001).  

The density and intensity of ties in the network are a decisive factor for the overall 

behaviour of the system. Strong ties that an actor has with others within a densely linked 

group do not provide as much diversity of knowledge and information as ‘weaker’ 

relationships to elements or groups external to the network. The strong links keep the 

network together while the weak links stabilise it (Granovetter, 1973, 1983, 1985).  

A structural optimisation of the relational connections, obtained as a balance of both weak 

and strong ties is the optimal solution for achieving strategic leverage in tourism 

destinations (Pavlovich, 2003b). It may enable richer and more intense information 

exchanges from which more comprehensive and satisfying supplier and consumer 

relationships have been detected (Pavlovich, 2003b). 

The macro level structural properties also have a strong influence on the single actors in a 

tourism destination. By studying the structural optimisation of the relationships, their 

heterogeneity, interconnection and reciprocity, Pavlovich and Kearins (2004) show how 

the characteristics of embeddedness of a destination network favour or hold back an 

organisation within the system and how this affects reciprocal flows of resources and 

information for the development of strategic capabilities.  

In some cases, different types of network arise, depending on the relative power of the 

participating firms: ‘dominating networks’, with a strong main controlling organisation and 

‘equal partner networks’, in which no single party controls the network and close mutual 

relations are established. The power and position of the entrepreneur and his company at 
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the destination can be a deciding factor in whether the company is prepared to work 

together with others or whether they are pushed to participate in the joint production of 

tourism (von Friedrichs Grängsjö, 2003).  

Therefore, for these highly fragmented ensembles to be effective functioning systems, the 

structure of the linkages between organisations is a critical factor to achieve strategic 

power. The importance of cooperating in networks is especially high for small businesses, 

the vast majority of companies in the tourism sector. They may consider their own lack of 

resources as a strong motivating factor to effectively enter a cooperating network (von 

Friedrichs Grängsjö, 2003). 

The tourism destination’s structure and dynamics are, therefore, recognised to be strictly 

connected. What is missing is a quantitative analysis of these factors and their influences, 

as most of the studies have relied, so far, principally on the qualitative analysis of a number 

of cases (see for example Dredge, 2006; Grangsjo, 2006; Novelli et al., 2006; Pavlovich, 

2003a; Pavlovich & Kearins, 2004; Pforr, 2006). 

The evolution of a tourism destination 

A tourism destination is not a static system. It evolves over time passing through different 

evolutionary phases. The analysis of the development of tourism destinations is an 

important theme in tourism studies. The literature on this subject has been built, basically, 

around the idea of a tourism area life cycle (TALC), originally proposed by Butler (1980). 

This model is composed by applying to the development cycle of a tourism destination the 

theories on the evolution of products (product life cycle model), dating from the 1950s, 

that were well established in consumer marketing studies by the time that Butler adapted 

the framework. A new product is launched, achieves acceptance and growth until 

competitors gain market share (Gardner, 1987). Then, innovation or repositioning is 

necessary to withstand declines in sales and profits. Butler applies these principles to 

dynamic, market-driven tourism development and suggests that successful destinations 

pass through a sequence of growth stages that follow the s-shaped logistic curve shown in 

Figure 4.9 (this model is similar to the one used to describe the general evolution of an 

industrial district, see section 4.1.1 and Figure 4.1).  
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Figure 4.9 Butler’s model of a tourism area life cycle (after Butler, 1980) 

The model, in the tradition of the diffusion theories, uses the number of tourists as a 

measurable outcome and identifies seven stages:  

� exploration: a small number of travellers independently explore a new location, 

either for personal adventure or to experience new cultures. At the location there is 

little or no tourist infrastructure; 

� involvement: as acceptance by the locals increases, the destination becomes more 

popular. Travel and accommodation facilities are improved, and there local 

investment in tourism related services and advertising begins;  

� development: the local community becomes involved in promotion, attracting more 

visitors, and the area turns into an established tourist destination, with a defined 

market. Visitors outnumber residents, external investment leads to loss of local 

control, man-made attractions emerge to replace natural or cultural ones; 

� consolidation: tourism is an important economic and social activity affecting the 

traditional economies and lifestyles. Land is given over to resort building, without a 

simultaneous benefit in increased wealth or jobs. Resentment by the local 

population may occur. This stage is characterised by slowing tourist growth rates 

and extensive advertising to overcome seasonality and develop new markets; 
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� stagnation: increased local opposition to tourism and a growing awareness of 

environmental, social and economic problems results in opposition to further 

growth. Capacity limits are reached and a destination image unconnected with the 

environment makes the area no longer fashionable;  

� rejuvenation: a secondary growth burst is initiated by some kind of renewal. New 

attractions replace the original facilities. New tourists may be of different socio-

economic groups or different age groups than the original; 

� decline: if nothing is done to react to a stagnation period, a final decline of the 

destination occurs, with partial or total abandonment of tourism as an economic 

activity, organised and supported by the community. Different degrees of ‘decline’ 

or ‘rejuvenation’ may give different patterns as outcomes (i.e. the alternative paths 

A to E in Figure 4.9). 

The model has been applied to many areas and in many cases has proved to be quite 

effective in describing or explaining the tourism history of a district. It has been 

commented on, improved, developed and criticised numerous times (Butler, 2005a, 

2005b). Many authors have used it to test its adequacy in specific situations (Agarwal, 

1997, 2002; Baum, 1998; Cooper & Jackson, 1989).  

Some of the model’s criticisms have been based on expectations (mostly unrealistic) of 

explanatory and predictive power, or on the concern that it emphasises factors which are 

specific to individual destinations rather than those common or shared with other places 

(Prosser, 1995). Some argue that destinations are more complex than products with a 

specific life cycle and more similar to living ecosystems evolving through time 

(McKercher, 2005). Nonetheless, Butler’s model, even if in some cases it has proved 

unable to fit the situation, is considered to have an important role in providing useful 

frameworks for the description of a tourism destination and in emphasising the need for 

proactive strategic planning processes (Hovinen, 2002).  

To overcome at least some of the limitations discussed above, others, such as Lozano et al. 

(2005), have proposed a more rigorous formalisation by linking the TALC model to 

economic growth theory; their numerical simulation of an environmental growth model for 

an economy specialising in tourism leads to the same general pattern of evolution. The 
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most important critique is that the TALC model is founded only on a number of case 

studies and, essentially, it lacks a standardised approach and a formal base. The absence of 

uniform measures and accurate quantification make it difficult to use for effective planning 

purposes (Getz, 1992). As a consequence, conceptual and empirical difficulties have been 

found in defining the stages, the predictability of the progression, and complications 

involving multiple products with multiple cycles in a given destination or in geographical 

subdivisions of the area (Agarwal, 1994, 1997).  

Figure 4.10 Life cycle of an adaptive system (after Holling & Gunderson, 2002) 

The recognition of signatures of complexity or chaos in a tourism system has also led to 

other extensions and interpretations of the TALC model. Russell and Faulkner (2004), for 

example, combine the two approaches to explain the role of entrepreneurial forces in a 

tourism destination as elements of turbulence, change, and unpredictability. Farrell and 

Twining-Ward (2004), recognise in Butler’s life cycle a portion of the wider adaptive life 

cycle introduced by Holling (Holling, 1986; Holling & Gunderson, 2002) to describe 

complex adaptive ecological systems. In this interpretation, the front part of the cycle 

(Figure 4.10) closely follows the behaviour of a destination as described by Butler. Having 

arrived at the saturating stagnation phase, the system, left to itself, and without effective 

management tends to be over-connected, with a too rigid internal control and extremely 

vulnerable (Farrell & Twining-Ward, 2004). In these conditions most of the internal 
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resources are released, the networking characteristics are relaxed and the system goes into 

a self-reorganisation.  

Adaptive cycles take place at a range of different scales; they interact and can influence 

one another. The self-reorganisation phase, as for many complex adaptive systems, may 

lead to the formation of new hierarchical structures. The new level temporarily reduces the 

complexity of the system which can start a new evolutionary phase. 

Figure 4.11 Influence of different scales (left) and hierarchical evolution of adaptive life cycles 
(adapted from Holling & Gunderson, 2002) 

This panarchy (Holling & Gunderson, 2002) is also proposed as a general framework in 

which tourism can be analysed (Figure 4.12). 

Figure 4.12 The tourism panarchy (after Farrell & Twining-Ward, 2004) 

Even if in a purely qualitative way, with no support by quantitative measures, the idea is 

proposed as a faithful representation of a tourism system with its many diverse and 
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complex relationships and with its different structures, mostly hierarchically nested. Farrell 

and Twining-Ward state (2004: 279): 

… understanding the destination in terms of the panarchy of systems adds further substance and 

meaning, and the possibility of discovering how destination character emerges, how it may be 

kept or even enhanced. 

4.2.4 The contribution of network analysis 

Most of the results and the models on the structure of an industrial cluster or a tourism 

destination discussed above are derived by the analysis, mainly qualitative, of single cases. 

The importance of network structures has, however, pushed at least part of the literature to 

the usage of the techniques initially tuned by sociologists and, more recently, by so-called 

‘network science’. Social network analysis has been used several times to explore how 

networks are formed in the interaction between different players or, taking the network 

structure as given, to analyse economic phenomena that are constrained by the structure 

itself. 

These studies have given stronger confirmation to the idea that the structural elements of 

regional networks significantly affect interorganisational collaboration (Martinez-

Fernandez, 2001). Moreover, the quantitative analysis has emphasised the fact that not all 

the elements of a network share the same benefits from participation in a cluster. The 

performance of firms is associated with individual knowledge contributions and with their 

position in the knowledge network (Giuliani, 2006). Different structures provide different 

outcomes, and the role of larger companies may strongly affect the functioning and the 

success of the whole group or of single actors in the group. 

Formal analysis techniques may thus uncover patterns that a casual inspection may not be 

able to highlight. At the same time, the structure of the interactions with institutional 

supporting infrastructures helps in understanding the variability of agglomerations that 

could look apparently similar. Network analysis stresses the fact that what really matters is 

the existence of ties connecting networks of small firms to larger firms and how they can, 

in turn, connect them to global partners and suppliers. The issue is no longer whether large 

or small firms will succeed, but how regional economics link firms of various sizes and 

competencies together, and with what results (Castilla et al., 2000). On a larger scale, then, 
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inter-regional and international transactions may have a greater importance than the 

internal connections (Britton, 2003). 

Social network analysis also plays an important role in determining the effectiveness of the 

typology of the linkages. It has been shown, for example, that the claim that regional 

economic success is a function of strong social embeddedness in local networks is not 

always confirmed, but looser couplings yield better results in many cases (Staber, 2001). 

In addition to its contribution to theory, the understanding of the dynamics underlying 

industrial clusters can also inform public policy. The analysis techniques show, in fact, that 

industries cluster to have smoother access to information and resources (Sorenson, 2003). 

These methods also allow us to determine how, in what terms and with what limitations 

leading firms in a district act as knowledge gatekeepers (Morrison, 2004). It may happen, 

for example, that public interventions supporting individual leaders, intended as engines of 

growth for local systems, produce negative effects tending to reinforce internal 

asymmetries and boost internal conflicts, in particular between large and small size 

companies. 

More recent ideas have also been tested and applied to the structure of industrial networks 

leading to the conclusion that flexible specialisation in a large-scale industrial district is 

different from a simple ‘small world’ phenomenon, but has to consider more complex 

spatial clusterings (Nakano, 2004). 

Most works deal with network processes and principally with diffusion mechanisms 

(Coulon, 2005), again highlighting the influence of the topology, but also highlighting the 

importance of the internal performance of the single actors. Although the network analysis 

methods are quite ‘old’ and tourism is a network business, little has been done so far to 

apply these techniques to the study of the tourism sector. Some recent contributions, 

however, show the usefulness and the effectiveness of this approach. 

The networking of single individuals and the diversity of their ties play significant roles in 

the decision routines and paths in the tourism industry. Furthermore, it has been noticed 

that there are differences in the use of efficient ties, in terms of strong and weak ties. They 
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change depending on specific tasks, and successful actors are able to optimise their 

composition (Pesämaa & Skurla, 2003). 

This is a reconfirmation of results found in completely different disciplines such as 

biochemistry (Csermely, 2004). These studies validate the importance of a balanced and 

heterogeneous composition of links as a factor fostering the success of a tourism network 

(see Pavlovich, 2004, even if in that case available data were analysed only in a qualitative 

way with interpretative research methods).  

Policy issues are studied by Pforr (2001; 2002; 2006) in a series of papers dealing with the 

Australian Northern Territories. In these, he shows what usefulness the policy network 

approach has in describing, analysing, and explaining the dynamics of the tourism policy 

realm. Quantitative results are used to map the intensity and the density of sets of relations 

and to measure the relative consideration of the different stakeholders. Pforr also shows 

that measuring link characteristics leads to effectively examining the role of different 

actors in the network. He claims that it is possible to see how actors deemed as relevant for 

strategic planning processes turned out to be more or less insignificant for plan formulation 

processes. 

The formal network approach, besides highlighting the differences in the organisation of 

tourism activities in different destinations, proves useful in stressing the necessity of 

collaboration and cooperation, typically lacking in this sector (Bramwell & Lane, 2000). 

The emphasis on the formation of a value creation system through a balanced set of 

relationships substantiate this, and offers guidance to policy makers and management 

organisations (Scott et al., 2008a). 

Not only political and strategic tourism issues benefit from network analysis, but also more 

‘practical’ problems. A recent paper (Shih, 2006) shows, in fact, how to use these methods 

to revise the organisation of tourist facilities and services in particular destinations by 

mapping and measuring the structural characteristics of routes taken by tourists in multi-

destination trips.  

In conclusion, sound quantitative methods for the analysis of networks are of great 

importance for the study of a tourism destination, not only as a fascinating intellectual 
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problem, but also as a means to improve abilities and capabilities to understand the 

functioning mechanisms of a tourism destination in order to manage it effectively and 

efficiently. 

4.3 Conclusions: a theoretical framework for the thesis 

Chapters 2, 3 and 4 have presented a number of models and theories that form the broad 

theoretical basis in which the work discussed in this thesis is conducted. 

The object of the present study is a tourism destination. It is, with a systemic approach, 

seen as an integrated ensemble of different elements: social, economical and technical. 

Consistent with the industrial district models, it includes a number of different 

interconnected companies, exercising tourism activities at different levels, and public 

resources.  

This ensemble possesses a structure and works towards the achievement of defined 

(although sometimes not explicitly stated) economic and social objectives. The 

relationships among the different components are dynamic non-linear relationships; 

therefore, from a broader point of view a tourism destination is a complex adaptive system.

The general framework of complexity science gives a starting point for the study of a 

tourism destination. Within this framework, the structure of a system can be described in 

terms of its components and of the linkages that connect them. Moreover, among the many 

possible approaches, the study of the topological structure is able to give insights on the 

functioning of the system both from a static and a dynamic point of view. Therefore, it is 

possible to model a tourism destination as a complex network and use the ideas, the 

concepts and the techniques of network science to study its topology and its evolution over 

time. In fact, the topology of a network, as a predictable property, may greatly affect the 

overall dynamic behaviour and explain and control a number of processes from the 

diffusion of ideas to the optimisation of the relationships among the network components. 

The conceptual framework thus described belongs to the area sketched in Figure 4.13. 
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Figure 4.13 Schematic diagram of the theoretical background for the thesis  

Apart from the specific research questions (see Chapter 1 and the next chapter), a broader 

objective of this work is that of testing the validity of this general framework and of setting 

and refining a methodological path for the analysis of a tourism destination. The 

implications that can be derived, in terms of capabilities of understanding the general 

behaviour and the dynamic evolution of a destination, may give tourism organisation 

managers a strong leverage to improve the flow of information and to target opportunities 

where this flow may have the most impact on business activities. 

Moreover, a better comprehension of the nature and evolution of a tourism district may 

support public authorities, through efficient policy formation and diffusion, in developing 

the infrastructure and maintaining environmental quality and sustainability. 
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5 Methods 

The previous chapters have reviewed the literature relevant to this thesis. This chapter 

gives an account of the methods used in this study, the techniques adopted for the data 

collection and the issues that may arise from their use. This constitutes an important link to 

the research question (Creswell, 2003; Punch, 2005) and gives credibility to the results 

obtained and reported in the next chapter (Chapter 6). 

The object of this study is a tourism destination (or district) which is considered to be 

formed by an interconnected ensemble of organisations - a network. The research question 

this study answers (already stated in the introduction) is: 

How do tourism destination networks evolve over time? 

The development path of a tourism district is linked to its economic development and to 

the organisational forms the destination acquires along with those of the bodies that govern 

it (Pearce, 1989, 1992). The implications for both stakeholders and destination 

management functions have been highlighted in numerous contributions (see, for example, 

the extensive review in Lagiewski, 2005). The objective here is to account for this 

evolutionary path from a structural viewpoint. Structure, as stated in Chapter 1, refers to 

the topology of the network formed by the stakeholders of a tourism destination and the 

ties that connect them. The analysis also takes into consideration the possible relations 

between the dynamic evolution of the system and well-established models of the evolution 

of a tourism destination and their variations (Butler, 2005a, 2005b). 

To answer this question, the first step is to investigate the characteristics of a tourism 

destination from a network theory point of view. Therefore, the following question must be 

answered: 

RQ1: What is the structure of the tourism destination network? 

This can be done by enumerating the different system components and by studying the 

topology of their relationships (see Chapters 2 and 3). 
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Then, as discussed previously, it is possible to discriminate which model is better suited to 

explain the evolution (to date) of a network which has, at a certain time, particular 

characteristics, answering then the question: 

RQ2: How can we build an evolutionary model that reproduces the present structure? 

This model and knowledge of the network’s structure then allows two interesting problems 

to be examined: 

RQ3: How does the network structure affect dynamic processes? 

and 

RQ4: How can the network be optimised? 

In other words, how can we use analytical or simulation methods to maximise the 

efficiency or the speed of a dynamic process? If we know the topology of a tourism 

destination’s organisational network and we measure the efficiency of this structure with 

respect to some process (the diffusion of a policy, or the formation of an opinion on a 

specific issue), what are the analytical tools we may have to maximise the efficiency of this 

process? Or, if we consider the cost of information transfer activities, how can we 

minimise them? This can be particularly important for phenomena such as the diffusion of 

information, knowledge or policy messages. It is well known, in fact, that a good 

efficiency in these processes has an important meaning for the overall functioning of the 

destination system or for its competitiveness (see for example Argote & Ingram, 2000; 

Porter, 1998). 

All this, combined with the knowledge of the main events and the main accidents of the 

destination history, will put us in a position to answer our final sub-question: 

RQ5: How does this model relate to the history of the destination? 

This investigation will thus help to provide forecasts for future destination behaviour 

scenarios and inform the adoption of policy measures. 
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As stated in the introduction, this thesis sets forth a number of assumptions that bound the 

scope of the research. These are examined in section 5.6. 

This study could be conducted by simulating numerically a destination network (Albert & 

Barabási, 2002; Dorogovtsev & Mendes, 2002; Newman, 2003b). However, in the 

tradition of tourism studies, the approach taken has been to consider a real case. A study 

conducted on a real destination provides interesting and useful results: for example, by 

allowing comparison of the outcomes of the ‘experimental simulations’ with real situations 

or, in case a simulation study is needed to analyse possible different configurations, by 

posing constraints, derived from actual conditions, to the number and type of simulations 

that could be implemented. 

A case study approach also provides a field test of the set of methods proposed, thus 

providing an answer to the wider problem which underlies this whole thesis: the need for 

new and, possibly, more rigorous approaches to the study of a tourism system as discussed 

by Farrell and Twining-Ward (2004: 276):  

It is frequently acknowledged that tourism study is lacking in substantial theory of its own […] 

and has failed to capitalize on progress made in other disciplines. Consequently, as a field of 

study it appears isolated and research and teaching appear to have grave shortcomings 

attributable to its multidisciplinary history, organization, and relations with other fields that 

should inform the study. 

5.1 The research path 

The rest of this chapter describes the methods used for the analysis. Most of these come 

from the research tradition established in statistical physics. The epistemological attitude of 

a physicist is first described, with a discussion on the usage of ‘classical’ scientific method 

for a case such as the one presented in this thesis. The idea of considering a tourism 

destination as a complex network to which these investigation methods are applied raises 

the issue, discussed next, of the role of analogy in such studies. Finally, a justification of 

the possibility of approaching a socio-economic system with physics concepts is examined. 

After this discussion of the main epistemological approach to the present work, the first 

topic examined is the one concerning the selection of a suitable case to analyse. The choice 
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of Elba Island, a well-known Italian tourism destination, is justified and the collection of 

the data needed is discussed. This includes the identification of the actors of the tourism 

network and the enumeration of the linkages connecting them. The effects of sampling of 

actors are taken into account, as well as the influence that an incomplete list of network 

elements may have on the possible outcomes. 

Given that data can be collected, a network graph may then be built. This model of the 

system will then be analysed using the procedures shown in Chapter 2. The objective is to 

define and measure the main topological characteristics of the network model (RQ1 and 

RQ210). These measures are compared with those obtained for a synthetic graph formed by 

the same number of nodes and links, but with a random distribution of the connections. 

The topology of the network affects the dynamic processes that may occur such as 

information spreading, robustness with respect to external and/or internal crises, fragility to 

structural modifications, and cascading failures. Simulation algorithms applicable to this 

type of system will then be implemented, taking into account available graph theoretic 

computational methods and the principles of statistical mechanics. An optimisation 

process, with respect to efficiency in information or knowledge diffusion, allows 

assessment of the behaviour of the system and the advantages of the optimisation (RQ3 

and RQ4). 

The definition of an appropriate growth model for a given network can be used to predict 

its extent and structure at later times. The evolution of the system is inferred by applying 

the known models (see Chapters 2 and 3) and by choosing those able to render the present 

structure. The history of the tourism destination, represented, as it is customarily done (see 

for example Butler, 2005a, 2005b), by the time series of tourist arrivals or overnight stays, 

is analysed in terms of network evolution. An investigation of the structure of the system at 

some past period in time, obtained with the analysis of historical data, is used to further 

confirm the evolutionary model previously identified (RQ2 and RQ5).  

The wide diffusion of the Internet may lead us to think of a correlation between the 

topology of the WWW and the one of the tourism destination. This possible relationship 

 
10 Reference is to the research questions listed in the introduction to this chapter (Chapter 5) 
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will be verified. By comparing the ‘real’ network with its ‘virtual’ counterpart it is possible 

to highlight the differences, if any, and to examine the efficiency and effectiveness of the 

investments that tourism operators make in the field of information and communication 

technologies. This allows definition of one more question to investigate:  

RQ6: How do the real and technological networks compare in a tourism destination? 

Figure 5.1 A schematic depiction of the methodology used in this work 

A schematic depiction of the methodology used in this work is shown in Figure 5.1. Three 

main blocks can be recognised: the data collection; the network analysis and comparison of 
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the social (tourism stakeholders) and technological (websites) networks; and the final 

discussion on the methods used. 

5.2 The approach to this work: an epistemological digression 

This section contains a short discussion of some epistemological issues connected with the 

present thesis. The section contains a brief account of the position a physicist generally 

adopts in pursuing research objectives, a discussion of the concept of analogy, central to 

this work and a justification for the application of physics concepts to a socio-economic 

system such as a tourism destination. 

Starting from an initial conjecture of correspondence between a complex dynamic network 

and a tourism destination district, this work sets up a research program to build a 

methodological approach to the object of study. In the tradition of the ‘scientific method’ 

employed in an applied field, well represented by Dubin’s ideas on theory building (Dubin, 

1978; Lynham, 2002; Torraco, 2002), a general framework describing the initial 

assumptions has been set (see Chapters 2 and 3). These conjectures are verified by 

collecting suitable data and by using the instruments and procedures described in the rest 

of this chapter. After that, the original model will be revised and adjusted based on the 

results obtained. 

5.2.1 The epistemology of a physicist 

The approach of a researcher to a field of study is undoubtedly influenced by his own 

convictions and viewpoints. Philosophical and epistemological beliefs have always played 

a crucial role in the history of science. In many cases they have strongly affected the 

development of ideas and knowledge. 

In pursuing a research idea Weinberg (1994: 167) states: 

Physicists do of course carry around with them a working philosophy. For most of us, it is a 

rough-and-ready realism, a belief in the objective reality of the ingredients of our scientific 

theories. But this has been learned through the experience of scientific research and rarely from 

the teachings of philosophers. 
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The epistemological positions of researchers are seldom defined fully or coherently. 

Probably the best explanation of a physicist’s attitude is the one given by Albert Einstein 

(1949: 684) in which he represents the unsystematic and incoherent (at times) approach. In 

essence, what Weinberg and Einstein (a few among many, including the author of this 

thesis) maintain is that, even if recognising the importance of an ‘epistemological scheme’ 

in which the work is embedded, a researcher avoids considering this as a too strict 

guideline. Led by the activities he performs for finding an explanation to the phenomena 

under study, researcher’s methods may also look incoherent to a ‘systematic 

epistemologist’. The epistemological interpretation, for a physicist, can be postponed until 

a clear framework (models and theories) is established instead of adopting it as a guidance 

throughout his or her work. 

Interdisciplinarity is one of the main motivations of this work, which may also be seen as 

an example of the tendency physicists have to “invade other people's disciplines” as 

Duncan Watts (2003: 61) says. In recent years, a number of ideas, concepts and techniques 

typical of physics have been applied to different fields such as biology, economics and 

sociology. Some of the results of this work are quite interesting and have helped in 

improving the general understanding of these areas. In particular, in economics, physicists 

are having an increasingly important role, so much so that a new discipline has been born: 

econophysics (Mantegna & Stanley, 2000).  

The basic idea of applying physics concepts in other fields of study is far from new (see for 

example Mirowski, 1989) and instead may be dated back to the birth of what we today call 

physics. Examples include Hobbes’s The Leviathan (1651) which attempts to use the 

Galilean laws of motion to derive an ideal configuration of the society, or David Hume’s 

An Enquiry Concerning Human Understanding (1748) which set out to build up a science 

of mind and society in the image of Newton’s theories of the solar system. Today, 

however, the scientific community takes a different approach. Instead of mechanically 

applying physical laws and theorems to the economy, the approach is to make the best 

possible use of the background knowledge to build specific methods aimed at predicting 

the performance of a system (a society or an economy, in this case). This is done by 

deriving this prediction from a set of initial conditions and a series of mathematical 
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models. In such a way we hope to be able to obtain a reasonable account of the system, to 

determine what choices lead to what consequences and to make reasonable forecasts of its 

future behaviour. 

The awe-inspiring words used by Ettore Majorana in closing his contribution (Majorana, 

1942) to this way of reasoning are probably the best testimony. Referring to the possibility 

of using the then newly developed quantum mechanical statistical methods in the area of 

social and human sciences, he says (Mantegna, 2005: 140): 

From a scientific point of view nothing prevents one from considering that an equally simple, 

invisible and unpredictable vital fact could be found at the origin of human events. If this is so, 

as we believe it is, the statistical laws of social sciences increase their function. Their function is 

not only of empirically establishing the resultant of a great number of unknown causes, but, 

above all, it is to provide an immediate and concrete evidence of reality. The interpretation of 

this evidence requires a special skill, which is an important support of the art of government. 

The ‘method’ is the one set by thinkers such as Bacon (1561-1626), Galileo (1564-1642), 

Descartes (1596-1650) and Newton (1642-1727). It is the method that, although with many 

variations, amendments, modifications and interpretations, has allowed generations of 

scientists to come to our present understanding of many natural phenomena. 

Even if questioned, or questionable, from an epistemological point of view, scientists, and 

physicists in particular, think that their own job is to formulate theories that can be exposed 

to empirical testing and rejected if they fail the tests (Popper, 1959). These theories fit in a 

general framework (the paradigms discussed by Kuhn, 1962) that is kept until better 

alternatives are found. In this framework, a research program is set up (Lakatos, 1974). It 

consists of a hard core that states goals, issues and enquiries - in essence what the program 

is about. These are not open to falsification within the system, but are rather shielded by a 

‘protective belt’ of statements that are open to verification. When falsified, these are 

replaced by variations that are also falsifiable, but which continue to protect the hard core 

ideas. Thus a research program provides a framework within which research can be 

undertaken with constant reference to the presumed first principles which are shared by 

those involved in the program, and without continually defending these first principles. 
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Hard core paradigms are changed only after the empirical evidence shows that it is 

impossible to defend them any more. In some cases, however, even in the absence of 

strong empirical evidence conceptual problems may arise (i.e. problems of consistency, 

either internal or with dominant traditions in other fields). Then, as Laudan (1977; 1981; 

1984) maintains, we accept the ‘research tradition’ that is capable of solving the most 

problems, thus changing the dominant paradigms. In his view (Laudan, 1977), the 

framework in which a scientist works, the research tradition, has two basic aspects: it 

defines the characteristics considered problematic (mainly quantification, but also 

conceptual aspects) and it defines the method (or the methods) to be used to deal with these 

problems. Obviously, these definitions have a significant impact on how the research is 

conducted. Different traditions involve different hypotheses and different measurement 

models. These, in turn, affect the choice of issues to be studied, the approach to data 

analysis, the results and the implications drawn from the research. We select (or should 

select) the problems to investigate based on their consistency level and their possible 

empirical implementation. Scientific progress occurs when it is possible to increase the 

range of applicability of existing theories and their capacity of solving problems or if 

simpler and more elegant solutions can be found to more effectively describe natural 

phenomena. This follows Ockham’s (1284-1347) saying: “Pluralitas non est ponenda sine 

necessitate” (Entities should not be multiplied unnecessarily). 

Whether the basic methodological instruments are heavily quantitative or rely upon 

qualitative techniques, this framework is the one that characterises any science (or 

discipline willing to be recognised as such), be it natural, social or philosophical. 

5.2.2 The use of analogy 

A tourism destination is considered here to be a complex adaptive non-linear system. It is 

represented by a network of interconnected elements, and a description of this system is 

sought by adopting the approach described so far. In this attempt, methods and techniques 

originally developed for different purposes are employed. What guides this endeavour is, 

basically, an analogical line of reasoning. 

Analogies have been widely used in a number of different disciplines. In physics the 

method is well known and has a long tradition. One of the best examples is probably the 
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work by James Clerk Maxwell (Turner, 1955). In his writings (for example Maxwell, 

1870: 10) he has stated several times the effectiveness of a formal analogy between two 

systems as a way of increasing and deepening the knowledge of them. 

Whenever a new object of study emerges, a physicist tends to use analogical methods. 

Olson (1943: 1) expresses this idea as follows: 

Analogies are useful when it is desired to compare an unfamiliar system with one that is better 

known. The relations and actions are more easily visualized, the mathematics more readily 

applied and the analytical solutions more readily obtained in the familiar system. Analogies 

make it possible to extend the line of reasoning into unexplored fields. 

Metaphors and analogies arise as rhetorical figures. They are usually employed to clarify 

certain situations. Hundreds of different definitions can be found for these terms and 

dozens of philosophers have debated the subject, sometimes with long discussions on 

subtle differences (see for example Geymonat, 1972), so that it may be legitimate to give a 

personal interpretation of the whole matter. 

A metaphor is a very wide term suggesting a likeness between two phenomena or two 

objects. It is widely employed to exemplify various situations and to ease an intuitive 

comprehension of diverse concepts. This use for ‘aesthetic reasons’ does not always bring 

to practical descriptions or deep understandings (Gentner, 1982; Gentner & Jeziorski, 

1993). When a similarity between different phenomena may be established more firmly, it 

can be suggested that there exists some common underlying law or principle. This may be 

especially true where such a similarity exists between the functions of elements in different 

systems or between their structures. The usefulness of this approach depends on whether 

the consequences that can be drawn can be tested or observed and on the correctness of the 

theoretical framework in which the analogies are set (Daniel, 1955; Gentner, 1983).  

If structural relations can be reproduced in a simplified form in a distinct (and better 

known) environment, a mathematical model can be assembled. The effectiveness of this 

procedure has been proved in innumerable cases and in various disciplines (Gentner, 2002; 

Krieger, 2005; Pask, 2003; Wigner, 1960). From an epistemological point of view, 

although a concept can be taken with caution to avoid potential abuses (Daniel, 1955), it 

has been claimed that theories (stated as a set of postulates) showing not even a formal 
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analogy to some already existing system of abstract relations, would provide no means to 

understand how the theory could be applied to concrete problems (Nagel, 1961). 

In an ideal scale of possibilities, the concept of homology comes next. Derived from the 

biological sciences, it has the meaning of a “similarity, often attributable to common 

origin” or “likeness in structure between parts of different organisms due to evolutionary 

differentiation from the same or a corresponding part of a remote ancestor” (Merriam-

Webster, 2005). In other words it indicates a strong likeness (but not identicalness) in 

structure or function between parts of different structures or systems. From this it derives 

that homology implies both substantial and formal analogy (UIA, 2006).  

The difference between analogy and homology, however, out of their original ‘biological’ 

meanings (and sometimes even there), does not look very clear (Brigandt, 2004; Fitch, 

2000; Handford, 1999). The two terms are often confused and the definitions and the 

boundaries between the two concepts are not completely clear. Here, a homology between 

two different systems is considered to require a firmly set and empirically verified 

correspondence of properties and mechanisms. The ‘simple’ analogy, limited to a single 

case, is used in this work is a starting point. Further confirmations and further 

investigations will be needed to assess the capacity of the research path proposed here to 

‘solve problems’ (in Laudan’s sense) and to demonstrate its usefulness and its usability. 

Moreover, the use of the analogy has a catalysing function. As has happened many times in 

the history of science (in physics, for example, with scientists such as Faraday, Coulomb, 

Helmoltz, Maxwell), it serves as initial help in the development of new disciplinary fields. 

Known schemes, models and criteria may initially help in finding one’s bearings in the 

vast quantity of data, evidence, phenomena and to start organising all these into an organic 

set. With this contribution, it is hoped, tourism studies may acquire that status of a 

‘legitimate’ discipline that today is lacking, or is not fully recognised (Davies, 2003; 

Leiper, 2000b; Tribe, 1997). 

5.2.3 Physics and socio-economic systems 

One more consideration is in order concerning the epistemological implications of using 

the laws and methods of physics applied to social systems. This is an area where these is 



- 164 - 
 

little relevant prior literature. While a variety of papers deal with the epistemological issues 

of both natural and social sciences, comparing the attitudes and positions of researchers 

with regard to the similarities and differences of approaches and methodologies (see for 

example Durlauf, 1997; van Gigch, 2002a, 2002b), the specific problem of applicability of 

a ‘physical’ approach to social systems is discussed very few times and mostly only as a 

secondary topic. 

A physicist does not seem to feel the necessity to be epistemologically justified in using 

the knowledge and tools of physics to investigate even unrelated fields. Justifications and 

discussions are the job of the epistemologist and usually come very late and certainly not 

when, as in the case of network science, it is still in a very early stage of development 

(section 5.2.1). From a sociologist’s perspective, the application of physical network 

theory is either not relevant because the main interest is in studying qualitatively the 

behaviour of groups of people, or it is refused as non applicable. One of the reasons for this 

refusal can be that a non-physicist has, sometimes, a mistaken idea of what physics is. 

Bernstein et al. (2000), for example, consider that sociologists believe the ideas of physics 

are mainly those of Newtonian mechanics, where single or small sets of particles are 

studied. They have well defined characteristics (mass, velocity, energy) and, more 

importantly, their equations of motion can be described and investigated. Based on this 

idea, sociologists consequently object that a ‘social actor’ is completely different from an 

undifferentiated particle, its behaviour is totally dependent on its history, its beliefs and its 

decisions and thus a system of particles is too simplistic a representation. If we consider 

models such as the ones proposed by Schelling (1971), Axelrod (1997) or Sznajd-Weron 

(2000) this remark seems justified.  

However, in studying a socio-economic system we are mainly interested in its global 

behaviour and in the possibility of making predictions at this level rather than guessing the 

conduct of every single element (individual actors). The objective is to understand how 

regularities may emerge (when they do) out of the apparently erratic behaviour of single 

individuals (Majorana, 1942). In this perspective, the comparison with empirical data has 

the primary objective of verifying whether the trends seen in the data are compatible with a 
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‘reasonable’ microscopic modelling of the individuals and whether they are self-consistent 

or require additional factors. 

In these circumstances, as Castellano et al. (2007) note, only high level characteristics, 

such as symmetries, critical transitions or conservation laws are relevant. These, as the 

principles of statistical physics show, do not depend on the microscopic details of the 

system. Therefore, Castellano et al. (2007: 2) state:  

With this concept of universality in mind one can then approach the modelization of social 

systems, trying to include only the simplest and most important properties of single individuals 

and looking for qualitative features exhibited by models.  

In conclusion, the application of statistical physics laws and methods to the study of a 

socio-economic system such as a tourism destination can be considered justified, mainly if, 

as it will be shown in the rest of this thesis, the quantitative techniques rely strongly on a 

sound and accepted qualitative interpretation of the phenomena described.  

5.3 The case study 

Social science research (and economics and tourism studies as part of it) makes extensive 

use of case studies. The quest for new theories, the testing of existing models, ideas and 

assumptions, are activities performed very often by studying one or more cases carefully 

chosen. From these (or with these), it is possible to overcome the almost general practical 

and sometimes theoretical impossibility of performing systematic measurements to base 

theories and models. The discussion on the validity of the case method is still ongoing, and 

a recent paper states (Gerring, 2004: 341): 

Although much of what we know about the empirical world is drawn from case studies and case 

studies continue to constitute a large proportion of work generated by the discipline, the case 

study method is held in low regard or is simply ignored. Even among its defenders there is 

confusion over the virtues and vices of this ambiguous research design. Practitioners continue to 

ply their trade but have difficulty articulating what it is that they are doing, methodologically 

speaking. The case study survives in a curious methodological limbo. 

However, the usage of case studies is widely spread in the scientific community. Other 

disciplines, even those commonly considered ‘hard science’ such as physics, geology or 
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biology, have extensive recourse to it. In all cases in which it is not possible to perform a 

replicable laboratory experiment, an examination of a natural phenomenon is performed. 

From a single observation of a ‘case’, models and theories are built or existing ones are 

confirmed or refuted. Tycho Brahe’s observation of the comet in 1577 or the new star in 

Cassiopeia in 1572 led him to the conclusion that the Aristotelian view of the immutability 

of heaven was wrong. The eclipse of Jupiter's moon Io in 1676 induced the Danish 

astronomer Ole Rømer to uncover the finiteness of the speed of light. A single voyage and 

the ‘survey’ of the fauna of the Galapagos Islands in 1835 brought Charles Darwin to the 

idea of evolution. The presence of identical fossil species along the coastal parts of Africa 

and South America convinced Alfred Wegener to propose the continental drift theory in 

1915. The measurements made during the 1919 total eclipse of the sun led Arthur 

Eddington to the first important confirmation of Einstein’s general theory of relativity. 

These are just a few well known examples, but the list could be much longer. 

A “case study is an intensive study of a single unit for the purpose of understanding a 

larger class of (similar) units” (Gerring, 2004: 342) and whatever the field of study, the 

choice of a suitable case starts with a clear theoretical framework (Tellis, 1997a, 1997b). 

The rationalisation of theoretical topics dealing with the purpose of the study is a major 

determinant in the choice process. A review and a critical appraisal of the literature allows 

us to better specify the characteristics of the ‘possible case’ by comparing previous results, 

their validity and their limitations (Yin, 1994). Good use of theory helps not only to 

effectively design a case study, but also to guide the generalisation and the extension of the 

results. Yin (1994) focuses on the role of theories that exist prior to the study. He shows 

how knowledge of prior research is useful in case studies, and maintains that theory is 

important in order to build up a cumulative body of knowledge from a case instead of 

simply answering isolated empirical inquiries. 

A sound theoretical framework can thus allow us to: 

� select the cases to be studied in the first place, whether following a single case or 

multiple-case (replication) design; 

� specify what is being explored when doing exploratory case studies; 

� define complete and appropriate description for descriptive case studies; 
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� stipulate rival theories for explanatory case studies; and 

� generalise the results to other cases. 

Case studies can be single or multiple-case designs. Usually, the research is limited to a 

single-case design if it is not possible to find different examples for replication. Different 

types of case studies can be defined (Tellis, 1997a, 1997b; Yin, 1994): exploratory, 

explanatory and descriptive. In exploratory case studies, data collection usually helps in 

defining the research questions and hypotheses. Explanatory case studies help in causal 

investigations. Descriptive cases require a theory to be developed before starting the study 

and are used in the formation and validation of hypotheses of cause-effect relationships. 

Moreover, a case can be (Stake, 1995; Tellis, 1997b):  

� intrinsic: when the researcher has an interest in the case;  

� instrumental: when the case is used to understand more than what is obvious to the 

observer; and 

� collective: when a group of cases is studied.  

In any event, case study research, even in multiple-case designs, is different from sampling 

research which relies on considerations derived from measurements performed on 

probabilistic samples extracted from a defined population. 

The unit of analysis is a critical factor for successful investigations. Typically, it consists of 

a system of action (Loubser, 1976: 244): “the organization of the components of action 

into a set of relatively stable mechanisms that reduce the complexity of the contingencies 

impinging on the achievement of the goal states of the actors involved”. The idea is to be 

selective, choosing a limited number of issues considered fundamental to the 

understanding of the system being examined (Tellis, 1997b). 

Generalisation of case studies is a debated issue. Some critics state that results are not 

widely applicable (see for example Lincoln & Guba, 1985). Yin refutes this idea by 

making a difference between analytic generalisation, meant as “a template with which to 

compare the empirical results of the case study” (1994: 31) and statistical generalisation in 

which “an inference is made about a population (or universe) on the basis of empirical data 

collected about a sample” (1994: 30). The one pertaining to case study research is an 
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analytical rather than a statistical generalisation, therefore no point can be made in 

discussing the limitations in ‘sampling’. Single-unit studies provide cases that are likely to 

be comparable to one another (Gerring, 2004) and may allow us extensive testing of the 

causal implications of a theory. They are useful in providing evidence supporting the 

theoretical arguments. On the other hand, single-unit investigations may exhibit a 

representativeness problem in the extension and the generalisation of the results. Multiple-

unit cases pose the problem of making assumptions about the comparability across the 

instances chosen. As for hypotheses testing, only a few of them are checked, but the 

multiplicity of units may give a stronger degree of confidence in confirming the results. 

However, it is at least possible to think of a ‘weak’ form of generalisation, named 

‘naturalistic generalisation’ by Gomm et al. (2000) by which a case study is able to provide 

working hypotheses that may be appropriate for other (almost similar) cases. 

Apart from these considerations, one issue in the choice of a suitable case is the availability 

of the data needed. The validity of case study research is greatly enhanced when multiple 

data collection methods are employed and both qualitative and quantitative methods are 

used (Eisenhardt, 1989; Yin, 1994). 

The case chosen for this study, therefore, should follow the requirements discussed above. 

In addition, it should help to identify in the clearest possible way the boundaries of the 

destination. The issue here is that, like in many other parts of the world, the unit for which 

most of the data and information (mainly statistical) are collected is coincident with an 

administrative unit. From a general point of view, though, a tourism destination (at least as 

seen by tourists) could include a geographical area which is different from the 

administrative boundaries.  

Moreover, the network built should have a size useful for conducting the analyses required. 

It is, obviously, preferable to deal with the smallest possible size in order to ease the data 

collection process and for ‘computational’ reasons; some of the algorithms involved could 

be very long for very large networks. However, networks with less than some hundreds of 

vertices are not considered sufficient to show their properties in a significant way (see for 

example Dorogovtsev & Mendes, 2003; Solé et al., 2000).  
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These considerations led to the choice of Elba Island as the destination to be investigated 

(see a description in section 5.3.1 and a discussion about data collection in section 5.4). 

Elsewhere it has been argued that Elba is a complex adaptive system (Baggio, 2008) which 

can be well represented in terms of a network. It is also a destination whose structure is 

similar to the one exhibited by many other destinations (Pechlaner et al., 2003; Ritchie & 

Crouch, 2003; Tallinucci & Testa, 2006). Being the first study performed with network 

analysis techniques, this work is exploratory, and the choice of a typical destination 

(Sheehan & Ritchie, 2005) will give more strength to the findings and the conclusions 

presented in this thesis. 

The main reasons for this choice can be summarised as follows: 

� it is an Italian summer destination and one of the most significant in terms of tourist 

flows (both domestic and international). It is a suitable and representative case study 

which complies with the requirements described in this section; 

� its geographical boundaries practically coincide with the administrative unit. Elba is 

part of the Province of Livorno which includes two tourism boards: Costa degli 

Etruschi (covering the province coasts) and Arcipelago Toscano (the islands). In the 

latter, excluding Elba, only Capraia island has some (limited) tourism establishments, 

but they are easily identifiable. The destination boundaries, therefore, almost coincide 

with the administrative boundaries, thus easing the collection of tourism related data 

(arrivals and overnight stays); 

� the ‘size’ of the destination in terms of number of actors involved (accommodation, 

services, intermediaries, transport, associations etc.) is of about a thousand elements, 

more than sufficient for the purpose of this research. If the sample was smaller, some 

of the statistical analyses used in this work might not have enough power to allow a 

clear discrimination between different hypotheses; and 

� being an island, the destination is ‘self-contained’ and the boundaries are well 

delimited as is required for a case study (Yin, 1994). Even if not always true in a 

general case, the knowledge of this particular destination ensures that boundaries’ 

effects (organisations physically located outside the destination administrative unit but 

mainly working in the destination itself) are quite limited and can be considered not 

significant for our purposes. 
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5.3.1 Elba Island 

This section describes briefly the main characteristics of Elba Island with a focus on the 

economic conditions and the ‘touristic importance’ of the destination. 

Elba is the largest island in the Tuscan archipelago, in the heart of the western 

Mediterranean Sea (coordinates: 42°46’ N; 10°17’ E). It is the third largest island of Italy 

(223.5 km²). Its shape is elongated (27 km x 18 km) and its major axis is aligned almost 

exactly along the east-west direction.  

At only three nautical miles from the mainland, it is strategically located in the middle of 

the naval routes reaching Tuscany, Sardinia and Corsica. Elba represents an important 

environmental resource in Italy. Its geographic position, temperate climate, the variety and 

beauty of its landscapes, the coast and the sea, make it a well known destination.  

Figure 5.2 The geographical position of Elba 

Geography, morphology and climate  

The morphologic characteristics of the Tuscan islands come from their volcanic origins. 

Elba offers several different landscapes including mountains, such as Mount Capanne 

(1018 m), alternating with valleys and coastal plains.  

About one third of the surface (223.5 km2) is more than 200 m above the sea, while three 

quarters is more than 50 metres high. The coastline is 147 km long, with over 70 beaches 

(17,126 metres of beach; 7,908 sand, 3,510 shingle and 5,708 mixed). Almost two thirds of 

Elba is high and rocky. Small beaches can be found in correspondence to the major rivers. 
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The soil of the islands of the Tuscan archipelago is rich in minerals, and there is a natural 

museum for curious and interested people and for mineral scientists. The minerals have 

determined many economic and historic events of the archipelago, especially for Elba and 

Giglio. Their presence is so important that the archipelago belongs to UNESCO’s list of 

geologic sites.  

The Tuscan islands have a peculiar ecosystem. There are interesting animals and very rare 

endemic plants. The location is of inestimable scientific value, but the ecosystem is fragile 

and delicate. The islands form also the most important corridor of the whole Mediterranean 

basin for providing shelter to many bird species on their migration paths from Europe to 

Africa. For these reasons the archipelago is a protected area. Founded in 1989, this is the 

largest marine park in Europe: 600 km2 of protected water and 180 km2 of protected land. 

Figure 5.3 Elba in a map (dated 1791) of the Napoleonic period (after Godlewska, 2002) 

The climate of Elba is typical of most marine areas, providing mild weather even 

throughout the winter period. Rainy days are reasonably scarce, particularly throughout the 

summer season. 

Elba’s economy 

Mining, active since the Greek exploitation started in the fifth century BC, had practically 

ended at the beginning of 1990s. Agriculture and farming are still present on the island, but 

have rapidly declined in the last 50 years. In 1971, an area of about 44.41 km2 was 
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agriculturally productive (almost 20% of the total); 10 years later, in 1981, the area had 

decreased to 23.85 km2 and in 1991 only 16.50 km2 were left to agriculture production. 

Today, no more than about 9% of Elba inhabitants are still employed in this sector.  

During the World War II, the island was bombarded and occupied by German troops. 

Mining, the main activity that had supported the local economy, was practically destroyed 

and, after the war, the only alternative for the population was emigration.  

The biggest economic efforts made by the Italian government go back to the period just 

after the end of World War II, with the launch of construction as a substitute for the closing 

of the iron and steel factory in Portoferraio. This lasted up until the last years of the 1950s, 

when Elba discovered tourism.  

The population of Elba, around 30,000, has remained more or less constant in the last few 

years. One fifth of the population live in the major cities. From an administrative point of 

view, Elba belongs to the province of Livorno (Tuscany region) and comprises eight 

municipalities: Capoliveri, Marciana, Marciana Marina, Marina di Campo, Portoferraio, 

Porto Azzurro, Rio nell’Elba and Rio Marina. 

Since the 1960s, tourism has grown to become the main (almost exclusive) economic 

activity on the island. Today, 200 hotels and 400 other accommodation establishments 

(camping, residences, vacation houses, etc.) provide more than 12,000 rooms with 36,000 

bed places. A significant number (29%) of Elba people work directly in tourism related 

businesses. The tourism infrastructure has remained rather constant over the last years 

(Table 5.1 shows the number of hotels and bed places for the last five years). 

The average tourist arrivals, with a steady increase in the last 50 years, have reached 500,000 
with about 3 million overnight stays ( 

Table 5.2 and Figure 5.4). Elba (and the nearby small islands) is one of the top 20 Italian 

tourist destinations. 

Table 5.1 Elba hotels and bed places in the last years (source: Elba Tourism Board) 

Year Hotels Bed places 
1970 153 7,319 
1980 195 10,497 
1999 210 16,255 
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2000 209 14,067 
2001 212 14,022 
2002 212 14,032 
2003 211 16,082 
2004 210 16,009 
2005 208 15,924 
2006 207 16,066 
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Figure 5.4 Tourism in Elba: overnight stays for the period 1954-2006 (source: Elba Tourism 
Board) 

 

Table 5.2 Elba tourism statistics since 2000 (source: Elba Tourism Board) 

 Arrivals Overnight stays 
Year Domestic International Total Domestic International Total 
2000 348,624 141,044 489,668 2,091,484 995,638 3,087,122 
2001 349,469 149,255 498,724 2,132,504 1,059,729 3,192,233 
2002 329,262 143,680 472,942 2,046,338 1,002,668 3,049,006 
2003 242,288 150,803 393,091 1,650,343 1,352,772 3,003,115 
2004 333,909 117,127 451,036 1,880,281 818,178 2,698,459 
2005 334,993 112,790 447,783 1,992,083 824,585 2,816,668 
2006 350,672 118,287 468,959 2,180,825 899,681 3,080,506 

Average 327,031 133,284 460,315 1,996,265 993,322 2,989,587 

As might be expected for such a destination, tourism shows a strong seasonality. The 

tourists’ presence begins in April and May and declines in October, with a major 
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concentration in July and August (Figure 5.5). Italians account for 70% of the tourism 

demand for Elba. Germany, Austria and the northern European countries are the most 

important foreign markets. 
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Figure 5.5 Overnight stays seasonality: 1996-2006 average (reference is year average) (source: 
Elba Tourism Board) 

In conclusion, the geographical and environmental characteristics of Elba make it a 

pleasant tourism destination and its economic history has acknowledged this natural bent 

by making the island one of the main destinations in the Mediterranean. This ‘case’, 

therefore, looks especially interesting for the aims of this thesis and because of its 

resemblance to similar locations, facilitating some kind of generalisation of the results 

obtained here. Moreover, as will be shown in the next sections, the size, in terms of 

number of stakeholders, is more than sufficient to provide meaningful statistical analysis of 

their web of connections. 

5.4 Data collection 

The analytical framework developed in the previous chapters provides the basis for 

understanding how a tourism district can be represented and analysed.  

The requirements of the theoretical framework are important in the selection of a method 

for data collection. They determine what data are relevant and need to be collected for 
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adequate explanations (Yin, 1994). The unit of analysis considered here is a tourism 

destination composed of a collection of organisations (public or private) and their common 

relations. In other words, the destination is seen as a network whose actors are the single 

organisations and whose links are the connections established among them. 

The investigation, therefore, starts with the specification and identification of the elements 

(stakeholders and their relations) of the district network and with the collection of the data 

needed to perform the different analyses. Social network analysis literature has dealt quite 

extensively with the problem of enumerating the ties among a network’s actors and with 

the reliability of the different methods proposed to collect the necessary data (Marsden, 

1990). The problem has been well known since the seminal work by Ove Frank on 

statistical inferences in graphs (Frank, 1971). 

The analysis of such networks relies on data collection procedures that may be difficult to 

execute or lead to incomplete or unreliable outcomes. The collection is typically based on 

surveys, with a number of different techniques that aim at highlighting the connections 

among the different actors, and statistical sampling procedures are applied. Sampling 

global network properties, however, is challenging since errors grow exponentially. 

Informants may be implicated in relationships with numerous other actors with different 

‘intensity’ so that their subjective judgement may induce strong bias in reporting the 

situation and their accuracy may be questionable (Bernard et al., 1984). In a complex 

network, even minor errors can have striking effects on the properties as a whole. 

Moreover, after the extensive studies conducted recently (see Chapter 2), it is now clear 

that the topology of a network may greatly affect these measurements. 

In order to draw up feasible and replicable methods for the collection of useful data, it has 

been deemed important to proceed in two steps: the first one is the design of a range of 

survey techniques and the second is the assessment of the completeness of the sample 

gathered and the evaluation of the effects on the quantities to be derived. This latter issue is 

discussed in the next section. 
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5.4.1 Sampling issues 

Classical statistical methods allow a wide range of possibilities to estimate, infer, 

generalise and model some characteristics of a set of objects (a population) by studying the 

same characteristic in a subset of elements: a sample. A number of randomly chosen items 

are investigated and, if the distribution of the population is known or can be supposed, we 

assume that the sample possesses the same distribution. A wide variety of sampling 

schemes (simple random, stratified, probability proportional to size, systematic, cluster, 

multistage) are also available, all well described and studied in terms of validity, reliability 

and applicability to different situations (Cochran, 1977; Gentle et al., 2004; Langley, 1971; 

Shao, 1999; Sheskin, 2000). 

Until the early 2000s, the only network model available was the one described by Erdős

and Rényi (section 2.4.1), in which the connections among the vertices are distributed at 

random and follow a Poisson-Normal distribution. In this situation, all known sampling 

techniques hold well and even a large network can be approached by using ‘standard’ 

statistical methods. The problem of adapting known sampling schemes to these systems 

has been approached by social scientists, and the main issues discussed have been the 

identification and enumeration of the social network members, the delimitation of such a 

‘fluid’ system, and the reliability of the response to surveys which try to highlight 

connections among the system components or the accuracy of informants reporting on 

social group characteristics (Bernard et al., 1984; Doreian & Woodard, 1992; Erickson & 

Nosanchuk, 1983; Frank, 1979; Frank & Snijders, 1994; Grannis, 2004; Holling, 1978; 

Killworth & Bernard, 1976; Laumann et al., 1983; Leydesdorff, 1991; Marsden, 1990; 

Rothenberg, 1995; Scott, 1988; Tichy et al., 1979a; Wasserman & Faust, 1994).  

The boundary specification problem is one of the most important issues (Laumann et al., 

1978; Laumann et al., 1983). It consists of the definition of the rules for the choice of 

actors and the ties of a network. Ignoring part of the elements, or lacking part of the data, 

can have a direct influence on the estimation of the main network parameters. Simulation 

studies show that clustering and assortativity coefficients are overestimated when both 

actors and relations are omitted, and underestimated when ties are missing or incorrectly 

reported in surveying the network components (Kossinets, 2006). On the other hand, when 
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the links are correctly identified, some centrality measures (in-degree and simple 

eigenvector, see Chapter 2) are found to be relatively insensitive to the sampled number of 

vertices in the network, so that even 50% of missing actors still allows a reliable estimate 

to be formed (Costenbader & Valente, 2003). Important for this research is that, even in the 

presence of some data collection bias, significant evaluations of important network 

parameters can be performed. 

In sampling social networks, a widely used method is so-called snowball sampling (Frank, 

1979; Frank & Snijders, 1994). The technique allows the building up of a sample by 

starting from an initial set of network actors and asking them to list other actors with whom 

ties exist. The new ‘members’ are then queried to determine their connections and so forth. 

The statistical properties of snowball samples have been studied and the method is thought 

to provide good samples of populations where a large number of steps are performed. 

However, since sample elements are not selected independently from the environment in 

which the investigation is conducted, a ‘snowball’ can be strongly biased (Rothenberg, 

1995; Sudman & Kalton, 1986). Several ways to overcome this problem have been 

proposed. One consists of creating a fixed list containing an inventory (or a random 

sample) of network members and asking the respondents to identify those with whom a 

relationship exists. The results, nevertheless, are not fully satisfactory and the method is 

shown to perform more poorly, especially, if the network has some growth mechanism 

(Doreian & Woodard, 1992).  

A better proposal is the respondent-driven sampling method in which a basic snowball 

sample is weighted to compensate for non-random selection patterns (Heckathorn, 1997). 

Weights are determined by assuming that the different snowball steps select vertices with 

probability proportional to their degree and by using Markov chain theory. It has been 

shown that this technique allows one to make asymptotically unbiased estimates of 

network size and clustering across groups and to make estimates about hidden parts of a 

social network (Salganik & Heckathorn, 2004). 

One more crucial issue, stressed by many authors (Bernard et al., 1984; Killworth & 

Bernard, 1976), is the accuracy of the reports by the informants contributing to the 

sampling schemes, mainly for what pertains to ‘historical’ information on the evolution of 
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the social network. The main answer to this problem resides in the necessity to cross-test 

all the data gathered and to use and compare different collection methods. Moreover, it is 

noted that the time elapsed between an interview and the time at which information is 

sought is strongly related to the reliability of the data (Marsden, 1990; Wasserman & 

Faust, 1994). 

However, the most recent results on network topologies (see Chapter 2) have radically 

modified this view and added a number of new issues in the sampling of a complex 

network. All the considerations made so far assume that the network has a random Erdös-

Rényi (ER) structure (section 2.4.1) while, as seen in Chapter 2, most real networks exhibit 

a structured non-homogeneous topology. The effects of an incomplete sampling of network 

components (both nodes and links) on the structural characteristics needs, therefore, to be 

assessed in a different way. This can be done by using the results provided with regard to 

the robustness or the fragility of such networks (section 3.2.1).  

Figure 5.6 Effects of random removals (errors) and targeted attacks (attacks) for random (ER) 
and scale-free (BA) networks (f is the fraction removed) on average path length (L) and 
efficiency (E) of the system (after Boccaletti et al., 2006)  
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Consider, for example, a scale-free (SF) network and compare its behaviour with respect to 

a random removal of vertices or to a targeted removal of the most connected ones. As seen 

in section 3.2.1, the results of this procedure lead to the situation depicted in Figure 5.6. 

The overall connectivity of the network is quite robust under random node removal, while 

it is easily lost when coordinated attacks affect just a few highly-connected nodes. It is 

clear, then, that an incomplete network may show properties that have different 

characteristics from those possessed by the complete system. 

The relationship between the network parameters measured on a partial sample, and the 

complete one, can be inferred by simulating a sampling process and by calculating the 

difference effects. With this approach, a number of recent studies have provided insights 

into these issues (Han et al., 2005; Lee et al., 2006; Rafiei & Curial, 2005; Smith et al., 

2003; Stumpf et al., 2005a; Stumpf & Wiuf, 2005; Stumpf et al., 2005b). 

 

Table 5.3 Effects of sampling methods on SF network properties. As the sampling fraction 
decreases (�), the quantity may increase (�), decrease (�), stay the same (�), or behave 
according to the specific network (�) (adapted from Lee et al., 2006) 

 Degree 
exponent 

Average 
path length 

Clustering 
coefficient 

Betweenness 
exponent 

Assortativity 

Node � � � (�) � � �
Link � � � (�) � � �
Snowball � � � � � �

Table 5.3 shows the behaviour of main network parameters in the case of an SF network 

for different sampling methods. It must be noted that the average path length may have a 

stronger dependency on the average degree, decreasing with the increase in degree. This 

effect may overcome the one shown in the table for peculiar cases.  

If the network has an ER (or, generally, exponential) topology, the dependency is different 

(as discussed above). For example, a random sample preserves the shape of the degree 

distribution while modifying the average degree value (see Figure 5.7).  

These results provide general criteria for sampling methods when some specific parameter 

is investigated and allow a better evaluation of the analysis results. By estimating the 
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sampled fraction, therefore, it is possible, at least, to determine bounds for the main 

network parameters. 

 

Figure 5.7 Effects of the sampling fraction (p) on the degree distribution of an exponential (ER) 
network (after Stumpf & Wiuf, 2005) 

The main implications of the preceding discussion for this work is that an assessment of 

the completeness of the data gathered is needed in order to correctly evaluate its influence 

on the estimate of the main topological network parameters (see section 5.4.2).  

5.4.2 The empirical data 

Tourism activities are difficult to define precisely and the same, if not increased, difficulty 

is found in defining what economic activities should be included in the idea of ‘tourism 

destination’ (see the discussion in Chapter 2 and section 4.2). For our purposes, and with 

the general interpretation of a tourism district given in section 4.2.3, the elements 

considered as part of our unit of analysis were those organisations (companies, 

associations, groups etc.) belonging to the areas specified in the following list (Table 5.4).  

The list draws mainly on similar inventories found in the principal recommendations of 

international organisations for the collection of tourism statistical data (EUROSTAT, 2000, 
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2002; OECD, 2000a, 2004; UNWTO, 1995, 2000). This way, a better replicability of the 

study methodology was ensured. 

Table 5.4 Components of a tourism destination 

Category Subgroups 
Accommodation Hotels and similar establishments 

Other accommodation establishments 
Food-and beverage-serving Restaurants and similar 

Pubs, bars and other 
Transport Road and water transport 

Transportation means rentals 
Maintenance and repair services 

Tourism intermediaries Tour operators, travel agencies 
Information and tourist guide services 
Real estate services 

Cultural resources Museum and other cultural services  
Performing arts 

Recreation and entertainment Sports and recreational sport services  
Night clubs, discos 
Other amusement and recreational services 

Tourism associations Industry associations 
Consortia 

Public tourism bodies  
Other tourism services  

Table 5.5 Elba destination network actors collected for the study 

Category No. 
Accommodation 408
Food & beverage 341
Transport 5
Tourism intermediaries 46
Cultural resources 28
Recreation and entertainment 170
Tourism associations & consortia 17
Public tourism bodies 2
Other tourism services 11
Total 1028 
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Table 5.5 were identified and included in the study. The sources for this data are the lists 

published by the Elba Tourist Board and by the register of companies for the province of 

Livorno (the administrative area to which Elba belongs). 

The official estimate of tourism suppliers by the Elba Tourism Board (in year 2005) was 

204 hotels; 251 other accommodation establishments; and 535 restaurants, bars etc.  

The sample considered is lacking some units in the ‘other accommodations’ and in the 

‘food and beverage’ categories (typically some of the smallest private houses or restaurants 

and bars). This difference is mainly due to difficulties in the updating of official lists by the 

local tourist board. Besides this difference, which may well be regarded as non significant, 

the sample used can be considered complete. The total number (1028 items) fully complies 

with the requirements for a significant application of the network analysis methods 

proposed in this thesis (see section 5.4).  

The second component of a network is the set of linkages among the system elements. 

The main focus of this work is on the general topology of a tourism district network. 

Therefore, for the present study, all the links were considered bidirectional and 

unweighted. In other words, no importance was given to their strength or intensity. For a 

network of the type involved in this research (a social network formed by organisations 

belonging to a tourism destination), relational linkages can be:  

� transaction relations;  

� communication relations;  

� information exchange relations; 

� boundary relations; 

� instrumental relations; 

� power relations; 

� social relations; 

� kinship relations. 

These relations were identified in the following way. First of all, publicly available 

information, documents or records were consulted. These consisted of the promotional 
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materials published by the local tourist board, the tourist operators’ websites, the official 

company records of the Province of Livorno (for the board of directors compositions and 

companies’ ownerships), and the member lists of the different associations. A link between 

two actors was considered to exist if any of the following occurred: 

� membership in associations, groups or consortia; 

� belonging to the same group (e.g. owned by the same individual or group of people);  

� co-presence of members in the board of directors; 

� commercial agreements; 

� cooperation or collaboration agreements; 

� joint advertising on brochures or catalogues, or hyperlinks on organisation’s website. 

All data were collated into a database table. The elements coded were: stakeholder’s name, 

type of business (as categorised in Table 5.4 and Table 5.5), geographical location 

(municipality of the company’s headquarters), size of the company or organisation (small, 

medium, large). Each name was assigned an alphanumeric code representing these 

characteristics. The links were recorded into a different table. Each record consisted of two 

entries (fields) containing the codes of the connected stakeholders. This table was then 

used as input for the network analysis software packages listed in section 5.5. 

One more set of data was collected regarding the technological network. The destination 

stakeholders’ inventory (section 5.4.2) was examined and the list of existing websites was 

composed. Only websites with an independent URL were considered (i.e. pages belonging 

to larger portals, whose Internet address looks like: www.someportal.tld/operator_name 

were disregarded). Links among the Elban websites (defined as websites belonging to 

operators based in Elba) and from these to others outside Elba were counted by using a 

simple crawler and complementing the data obtained with a visual inspection of the 

websites. The visual inspection was needed to ensure the absence of missing connections 

and to overcome the limitations of the crawler in recognising the different forms of 

hyperlinking. The final dataset comprised 468 elements (websites) with 495 links. This 

size, although not large, can be considered sufficient to show the statistical properties of 

the graphs in a meaningful way (Angeloudis & Fisk, 2006; Dunne et al., 2002). Also in this 
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case all the data were hand coded into a database table following the same layout used 

previously. 

A series of in-depth, semi-structured interviews to the principal experts in the field were 

used to confirm the quality of the data collected and to highlight other possible 

interconnections. The participants were chosen among the directors of the Elba tourism 

board, the presidents of the main operators associations, members of the board of the main 

consortia and professional tourism consultants operating at Elba. In total, 13 people were 

consulted.  

The semi-structured form of interview was chosen for its characteristics with respect to the 

objectives of this part of the research (Lofland et al., 2006). Apart from a few direct 

questions on the existence and type of interorganisational connections (see the interview 

protocol in Appendix 2), the aim of this series of interviews was to gather information on 

the general situation of tourism at the destination and on its development history. 

Moreover, the expertise and direct knowledge of the informants was used to qualitatively 

assess the completeness of the set of connections collected with the techniques discussed 

above.  

Given these objectives and the methodology chosen, the number of interviewees can be 

considered sufficient to reach a good result. In qualitative investigations such as this, in 

fact, the literature suggests ‘sample sizes’ of this order of magnitude (Creswell, 1998; 

Dukes, 1984; Kvale, 1996). Even if the experience and knowledge of Elba tourism was not 

uniform across the people involved, the overall level was quite high due to their personal 

histories and their present roles. These differences were taken into account during the 

interviews by making them flexible as to what to ask and how, and which answers to 

follow up and which not to (Kvale, 1996).  

During the course of each conversation the responsiveness was very good, all the 

participants were collaborative and, as will be seen in the exposition of the outcomes and 

the discussion (Chapters 7 and 8), their contribution was effective in pointing out several 

issues which proved extremely useful for the qualitative interpretation of the results of the 

quantitative analysis presented in this thesis. All the interviews were documented, and a 
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second run (performed by e-mail) helped to clarify the thoughts and facts discussed by 

some of the interviewees. 

Finally, once all these elements (actors and ties) were collected, an assessment was 

performed to estimate the completeness of the sample and to derive possible influences on 

the main network parameters (see section 5.4.1). The assessment strategy for this work 

was, therefore, based on triangulation (Yin, 1994). Triangulation has been described 

(Denzin, 1989; Flick, 2004) as a method that allows the researcher to validate the results of 

the investigation by using data drawn from different sources, by using different researchers 

in the same study, by approaching data using different theories and perspectives, or by 

using different methods. The recognised advantage is to limit personal and methodological 

biases while enhancing the generalisability of the study (Decrop, 1999; Olsen, 2004) 

5.5 Network analysis 

The data collected allowed a graph of the tourism district network to be drawn. After that, 

the main characteristics were deduced with the analysis starting with the categorisation of 

the static properties of the system and then proceeding with the study of its dynamics and 

evolution. All the values computed for the case under investigation were compared with 

those of a synthetic graph, which has the same order (number of nodes) and size (number 

of links) and a random distribution of the links. This procedure allows a better 

understanding of the significance and of the ‘physical’ interpretation of the quantities 

involved. 

The calculations were performed by using several software packages widely employed in 

network analysis, and with the help of programs specifically developed for the purpose of 

the present study. The list of tools used includes: 

� PAJEK: a software for large network analysis and visualisation (Batagelj & Mrvar, 

1998); 

� UCINET: a general program for the analysis of social network data as well as matrix 

analysis and algebra and multivariate statistics (Borgatti et al., 1992); 

� SPSS: for statistical data analysis and charting (SPSS, 2004); 
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� MATLAB: a high-level technical computing language and interactive environment for 

algorithm development, data and analysis, and numeric computation (MATLAB, 

2004); 

� NETLOGO: a toolkit developed to implement agent-based simulation models 

(Wilensky, 1999). 

5.5.1 Static characteristics 

The basic measures computed for the Elba tourism network are those described in Chapter 

2. They were used in this context to assess the general structure of the network and the 

general characteristics of the tourism district. 

The quantities computed are (see Chapter 2 for definitions and formulas): 

� density of links; 

� degree distribution; 

� distribution of paths and average path length; 

� diameter; 

� clustering coefficient; 

� local and global efficiency; 

� betweenness centrality; and 

� assortativity. 

Moreover, the entropy of the network can be calculated. Several definitions and 

computation methods have been proposed for this quantity. According to Demetrius and 

Manke (2005), for a Boolean graph (unweighted and undirected), whose dominant 

eigenvalue is λ (the largest eigenvalue of the adjacency matrix A), it is possible to compute 

the Kolmogorov-Sinai (KS) entropy as: 

H = log λ.

H is also called topological entropy, since it is an invariant quantity, depending only on the 

characteristics of the network and takes into account both the degree distribution and the 

average path length (see section 2.3.2). H is shown to be positively correlated with the 
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robustness characteristics of a network and can be taken as an index for this feature 

(Demetrius & Manke, 2005). 

Figure 5.8 Topological entropy (H) and average path length (l) for different network topologies. 
The networks have same number of nodes (N = 100) and edges (M = 200) (after Demetrius & 
Manke, 2005) 

A social network such as a tourism district is, intuitively, not a uniform network, but it may 

exhibit some degree of clustering. Two possible measures for this feature can be used: the 

clustering coefficient and the modularity index. All the proposals for these measurements 

(see section 2.3.2 and 3.2.5), however, take into account only the general structure of the 

network, ignoring ‘semantic’ characteristics. In our case, we were interested in assessing 

the degree of cohesion of defined sets of actors, whether grouped by geography (actors in 

the same area of the destination) or by type of business (accommodation, intermediaries 

etc.), as representative of the degree of collaboration among them.  

For this purpose the modularity index was calculated. Following what discussed in Chapter 

3, the modularity index can be written as: 

∑
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where: N is the number of groups of actors, L is the total number of edges in the network, ls

is the number of links between vertices in group s and ds the sum of the degrees of the 

nodes in group s.

The groups considered were derived from the geographical division (stakeholders located 

in the eight Elba municipalities) and by business type. The results thus obtained were 
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compared with those of the algorithm proposed by Clauset, Newman and Moore (Clauset 

et al., 2004) which improved the Newman-Girvan method described in section 3.2.5. 

Moreover, a random network of the same size (same number of nodes and density, with a 

random distribution of the links) was used as null model.

The spectrum of a graph is strictly connected with its topological characteristics. The 

spectral analysis of the adjacency matrix and of the Laplacian matrix of the tourism 

destination network can be a useful, and in many cases computationally more efficient, 

method to derive its main parameters (see Chapter 2). Moreover, some features such as 

cohesive clustering, long paths and bottlenecks, and randomness of the network are 

highlighted by the study of the network spectrum.  

A spectral analysis of the tourism district network, therefore, was performed and all the 

main considerations discussed in Chapter 2 were applied to the specific case under 

investigation.  

5.5.2 Dynamic processes 

The structural properties of the tourism district system, as of any interconnected system, 

have a great impact on its dynamic characteristics and on the behaviour of dynamic 

processes that may occur (see section 3.2). 

In this scenario, the statistical and spectral methods described above (Chapter 3) were used 

to assess the robustness of the Elban network. The basic hypothesis is that a relationship 

between the network connectivity features and its resilience exists, where resilience means 

the capability to adapt, by resisting or changing, to potential hazards in order to maintain 

an acceptable level of functioning. In particular, the topological entropy measure (see 

section 5.5.1), taken as an index, can be compared to the same quantity for other similar 

economic and social systems as stated in the literature. More precisely, a simulation on the 

network data was performed. By iteratively removing network elements (randomly or 

targeted) the connectivity is measured to find the presence of possible critical parameters 

that may have affected the general network robustness properties. The simulation applied 

the model and the procedure described by Albert et al. (2000) and Latora and Marchiori 

(2001). We started with the whole network and computed the local Eloc and the global Eglob 
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efficiencies. At each step a random number of links (3%) was removed and the parameters 

calculated again. The simulation and the parameter calculations were programmed with the 

Matlab development environment (MATLAB, 2004). The results are compared with a 

similar simulation performed on a random network. The comparison allowed us to infer the 

effects of the actual topology on the capability of the network to stay connected 

(robustness). 

In a tourism destination system, issues regarding the diffusion of information or knowledge 

are crucial matters for its efficiency and effectiveness (see section 2.5). The method used to 

assess the network properties was derived from the one described in section 3.2.2 and 

stems from the tradition of mathematical models used in epidemiology to study the 

diffusion of human diseases (Bailey, 1975; Diekmann & Heesterbeek, 2000; Hethcote, 

2000). There is clear analogy here between the transmission of disease and the 

transmission of information or knowledge through a network (Bettencourt et al., 2006; 

Iribarren & Moro, 2007). The main difference is that, conventionally, epidemiologocal 

models have assumed perfect mixing: i.e., all individuals are equally able to infect all 

others, and have taken into account a random distribution of the contacts between 

individuals that are responsible for the infection (diseases spread through some kind of 

contact between the population elements). However (see section 3.2), recent advances in 

the study of complex networks have forced a reconsideration of diffusion models in order 

to take into account the effects of non-homogeneous network topologies (Kuperman & 

Abramson, 2001; Pastor-Satorras & Vespignani, 2001).  

In the simulation conducted here a simple SI epidemiological model was used. In this, the 

single individual can assume only two states, susceptible (S) to the infection, or infected 

(I). Despite its simplicity, this class of models has been shown to be quite effective and to 

be a good approximation of more refined and complex models (Barthélemy et al., 2005; 

Xu et al., 2007). In addition, it is suitable for describing the knowledge transfer process. In 

fact, we may well reasonably assume that once knowledge has been transferred to a new 

host, it will retain the knowledge received, therefore it will remain infected. This is an 

essential pre-requisite to innovation as unless the knowledge is transferred and used by 

enterprises at the destination, innovation will not occur. 
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The algorithm used for the simulation was the following: 

� the network is loaded; 

� one randomly chosen stakeholder starts the spread by infecting a proportion ki of its 

immediate neighbours. In tourism, this stakeholder is often a government-funded 

tourist board or economic development agency; 

� at each time step the infected elements transfer the knowledge to a proportion ki of 

their immediate neighbours; and 

� the process ends when all the network nodes have been infected. 

As a parameter for the model, the capacity of the single stakeholder to transfer knowledge 

was used. It can be expressed as a probability ki, whose value controls the number of 

neighbours which are informed by a single stakeholder. This accounts for an important 

difference between information and knowledge flows and the spread of viruses. While 

viruses tend to be indiscriminate, infecting any susceptible individual, knowledge is 

selective and is passed by its host only to a limited set of the individuals with which it has 

relations (Huberman & Adamic, 2004). Moreover, particular actors can have difficulties in 

acquiring and retaining all the knowledge available to them (a feature usually called 

absorptive capacity, see for example Cohen & Levinthal, 1990; Priestley & Samaddar, 

2007) due to their internal functioning or because of the associated costs. In tourism, this 

issue of absorptive capacity is critical, particularly given the dominance of SMEs in the 

sector. 

We can assume that the capacity of transferring knowledge is different for the different 

‘sizes’ of companies involved. Therefore, the network nodes were divided into three 

categories: large, medium and small. In our case we had the following proportions: large = 

7%, medium = 16%, small = 77%. The values for the proportion of neighbours informed 

used in the simulations run were (arbitrarily) set as: klarge = 1, kmedium = 0.8, and ksmall = 0.6. 

Since the structural characteristics of the network, and particularly the cohesion among 

stakeholders, can be a factor influencing the knowledge transfer process, the experiment 

was also performed with a modified version of the original network. This was obtained by 

rewiring the connections while leaving unchanged the original connectivity (i.e. the 

number of immediate neighbours of each stakeholder and the overall density of linkages), 
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in order to obtain a higher clustering coefficient and efficiency. The model described was 

implemented by using the NetLogo (Wilensky, 1999) software environment and is a 

derivation of some of the distribution library models (Rumor Mill as modified by F. 

Stonedahl: http://www.cs.northwestern.edu/~fjs750/netlogo/).  

The efficiency of the network, both global (Eglob) and local (Eloc), was used as an overall 

index to assess the capability of the system to ensure smooth and effective flows of 

information. This efficiency can be optimised. The optimisation was achieved by using a 

simulated annealing algorithm and a Metropolis algorithm (see section 3.2.4). The function 

to be optimised was the local efficiency (Eloc) of the network. The following procedure was 

used: 

� the actual network, with addition of a fraction p of the original number of links, is 

used as the starting configuration; 

� the efficiency for the initial configuration C0, E(C0), is calculated and an optimal final 

efficiency Eopt is set; 

� a ‘temperature’ value T, a temperature schedule ∆T (intervals of reduction) and a 

minimum threshold Tmin are set; 

� a random rewiring of the network is performed, obtaining a new configuration;  

� the efficiency of the new configuration is calculated with its variation with respect to 

the previous value; 

� the new configuration is accepted if the difference in efficiency ∆E is positive (the 

new efficiency is higher); if the new efficiency is lower it is accepted with probability 

p = e-∆E/T;

� if Tmin or Eopt have been reached, the configuration obtained is the final one, otherwise 

the temperature T is decreased by ∆T and the whole process is repeated. 

The algorithm is schematically depicted in Figure 5.9. 

The structural parameters of the optimised configuration were finally calculated and tested 

again with respect to robustness or diffusion processes. 
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Figure 5.9 Schematisation of the Metropolis algorithm used for network optimisation 

One more way to empirically test an information diffusion process is to perform an 

experiment by simulating the spread of a piece of information and comparing the time 

needed to notify the whole network (or a reasonable part of it). A comparison between the 

original system and the optimised one gives a quantitative measure of the effectiveness of 

the optimisation process. This can be done by using the following algorithm: 

� at time t0, an initial number of nodes is informed (in an active status); 

� at time t, an informed node will inform a fraction f of its first neighbours, skipping the 

one from which it received the information at time t-1 and those that have already 

been informed (at time t+1 a node informed at time t will start informing their 

neighbours, the nodes that were already active will continue informing); 

� the process is repeated until a fraction F of nodes of the whole network is informed; 

� the possible disconnected nodes are treated as having very weak ties within the social 

group; therefore, at the end of the process, in a final step, a fraction G of the 

disconnected nodes is activated and connected with some randomly chosen nodes. 

This may help in better simulating a real situation and taking into account possible 

problems in the complete enumeration of the links. 
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The total number of steps represents the period of time needed to notify the whole network 

(or the fraction F+G wanted).  

5.5.3 System evolution 

The actual topology of a network can be explained with different growth models (see 

section 3.1). The approach followed for identifying the candidate models is to simulate a 

number of different evolution mechanisms in order to find those that better match the 

resulting network characteristics in terms of connectivity patterns: degree distribution, 

average path lengths and clustering coefficients. 

The results deduced in this way provide the first part of the answer to the main research 

question: how does this tourism network evolve?  

The second part of the answer is found by considering the possible relationship between 

the network development and the evolution of the destination.  

As discussed in section 4.2.3, the development of a tourism destination is usually studied 

by considering some measurable outcome, such as tourist arrivals (TA) or overnight stays 

(OS). The first one, TA, is a mostly demand oriented measure, while the second, OS, takes 

into account some destination (supply side) structural parameters as well (see for example 

Ferro Luzzi & Flückiger, 2003; Garín-Muñoz & Amaral, 2000). This consideration 

(coupled with a wider availability of the basic data) led to the choice of overnight stays as 

the indicator. 

Traditionally, one of the well known models of tourism destination evolution (in the vast 

majority the model due to Butler, 1980, 2005a, 2005b) is used to explain the destination 

behaviour as a whole. In many cases, amendments, modifications or extensions of the 

model are provided to better match the theoretical framework and the empirical data (see 

section 4.2.3). 

In the present study a different approach was taken and the destination history was 

evaluated in terms of structural (topological) changes. The method consisted of analysing 

the behaviour of the overnight stays time series for Elba. As can be seen in Figure 5.10, the 
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steady increase of the series has three ‘breaks’ (a, b and c). A period of peaking overnights 

is somehow interrupted, then starts again. 

Figure 5.10 Overnight stays at Elba. Possible structural breaks in the time series are indicated by 
vertical lines and marked a, b and c (data source: Elban Tourism Board) 

The tourism destination network, in these periods, can be investigated to check whether 

there is any correlation between the series behaviour and the topological characteristics of 

the network. This can also give more elements to confirm the evolutionary model chosen 

above. Availability (and reliability) of historical data and informants’ accuracy typically 

decreases for more distant periods (see Bernard et al., 1984; Killworth & Bernard, 1976) 

leading us to consider a timeframe in the neighbourhood of 1990-1992.  

A complete quantitative assessment of the historical development of the Elba network 

would require a precise knowledge of the configurations at different times in the past. This 

knowledge is not available, at least not at the level required for exact calculations, 

therefore the layout of the network was estimated by considering the available data and the 

interviews conducted. 

The network was rebuilt with the information collected and its characteristics deduced 

following the methods presented in section 5.5.1. After that, a new simulation determines 

the dynamic evolution. The results were compared with those obtained as per section 5.5.2 

and a final assessment of the dynamic behaviour of the destination network was performed. 
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In order to gain a better understanding of the possible relations between structural 

evolution and the outcomes in terms of tourist stays, the general environmental situation is 

described. Political, social and global conditions for that time period are addressed. 

5.5.4 The technological network 

The web space is, nowadays, an important virtual counterpart of an economic and social 

system. The Internet age has allowed the development of new ways for producing and 

distributing tourism services. Web-based approaches and technologies are helping tourism 

suppliers and agencies reduce service costs and attract customers (Buhalis, 2000, 2003). A 

website looks to be a major tool (and, probably, it will be the only one in the future) to 

conduct business in the tourism field (see the surveys by Marcussen, 2006; PhoCusWright, 

2005). As for many other destinations, the Web has become, in recent years, an important 

means of promotion and commercialisation for the whole community of Elban tourism 

operators. The wide diffusion of these technological tools for both the demand side 

(tourists) and the supply side (operators) may allow us to use the website network as a 

further element to assess destination characteristics. 

The analysis of the technological networks started by considering them as nodes of a 

complex network, and the data needed was collected as described in section 5.4.2. The 

topology of this network was studied to assess its agreement with the known models for 

the Web and to compare the derived values with those published in the literature for other 

similar examples (see section 3.3). 

The results, mainly in terms of connectivity, were then compared with those of the ‘real’ 

destination network. This allowed us to determine similarities and differences between the 

‘real’ and ‘virtual’ behaviour of the destination stakeholders. Moreover, these results are 

used to assess the capacity of Elban tourism operators to exploit modern technologies in 

conducting their business. 

5.6 Research boundaries 

The scope of this study was potentially large, and therefore a number of boundaries were 

needed to make it both focused and manageable. These are given below. 
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The literature in the fields concerning this study is expanding very rapidly and knowledge 

has developed conspicuously. There are no doubts that this will continue in the timeframe 

necessary for the completion of this work. Every attempt has been made to review the most 

important literature, but there are, inevitably, works that might have been missed. 

However, the theoretical framework derived in the previous chapters can be considered 

fairly stable and complete as the most recent reviews in this field (network science) show 

(Boccaletti et al., 2006; Castellano et al., 2007; da Fontoura Costa et al., 2007). It can be 

reasonably assumed that the risk of having neglected some specific result which could 

radically alter the framework described is small. 

Like any methodology, the approach followed here has its limitations. Collection of data 

and estimation of its completeness, important for the elaborations performed, are delicate 

issues. Nonetheless, the procedures adopted and the considerations made on the influence 

of missing data on the network properties give a reasonable confidence that the results 

derived hold. A single case was examined, therefore the results are specific to that 

situation. The general methods discussed, however, have a much broader applicability.  

Being interested in the topological characteristics of a tourism destination network, and in 

its dynamic evolution, we disregarded the functioning of the single elements (the network 

actors), as well as the influence this may have had on the properties studied here. The 

analysis of these effects needs a further series of investigations and a further development 

of the methodology that go beyond the objectives of this work. 

With this in mind, it is worthwhile to recall here the main assumptions made in conducting 

this research: 

� since only topological characteristics of the networks are studied, no reference to 

possible specific functions of the single network elements is made. All the elements 

(actors) are considered equivalent;  

� all connections are supposed undirected (symmetrical) and unweighted unless 

explicitly stated in specific parts or for specific analyses; 

� the network nodes are organisations, companies and associations, and the links studied 

are considered to be connecting these elements, not parts of them (single persons or 

smaller parts); 
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� the network and the system are studied at a macro level. Therefore all characteristics 

derived have the same scale. 

Some minor limitations or more restrictive hypotheses, needed for specific computations, 

have been presented when required. 

Most initial studies of real world complex networks use these assumptions (Albert & 

Barabási, 2002; Boccaletti et al., 2006; Newman, 2003b). In this case their main function is 

to reduce the weight of the computations. This way it is possible to better direct efforts into 

interpreting the results and their implications for the management of a tourism destination. 

The author considers that the acknowledgment of these boundaries and limitations adds 

focus to this research program and is able to provide an effective possibility of replication 

of the methodology proposed. 

5.7 Ethical issues 

The empirical collection of data for this work involves also human participants, therefore 

the ethical concerns related with this type of research must be addressed (Veal, 2006; 

Vessuri, 2002). The University of Queensland guidelines for the ethical conduct of 

research have been considered: Policy No. 4.20.1 - Research Ethics Policy, and Policy No. 

4.20.2 - Procedures for the Conduct of Research (UQ HUPP, 2002). In the present case, the 

most critical issues are the informed consent and the confidentiality of the data obtained. 

According to the guidelines, the following have been adopted: 

� all the participants are informed of the reasons and the context of the research; 

� participants are made aware that their contribution is purely voluntary and they can 

withdraw at any moment; 

� participants are informed of their privacy rights and of the protection measures taken 

to guarantee confidentiality. This is done in agreement with the strict regulations 

imposed by Italian legislation (Laws No. 196/2003 and No. 675/1996); 

� information sheets are provided and a written consent form is signed by the 

participants; 
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� participants are given the option to request a summary of the final results. 

The ethical clearance for the investigation was requested and obtained by the Ethics 

Officer of the School of Tourism of The University of Queensland (Ethical Clearance 

Number TALM 25, 21st September, 2006, see Appendix 2).  

5.8 Conclusions: the methodological approach 

This chapter has described the methodological path followed for the study of the network 

of a tourism destination. The process can be summarised as follows: 

� a case is chosen. Its function, in the present work, is to be a field test for the 

development of the methods used; 

� data are collected. This implies the definition of the destination actors and the linkages 

among them. The sample collected is evaluated and, if not complete, the implications 

of the incompleteness for the subsequent measurements are assessed; 

� a network graph is built and analysed; 

� the static topological features of the graph are calculated; 

� dynamic aspects of the topologies are characterised. Main diffusion processes are 

simulated; 

� the network is optimised with respect to efficiency parameters in information or 

knowledge transfer and the results are compared with those obtained for the non-

optimised network; 

� evolution models for the destination network are assessed and compared with the 

‘traditional’ measures of tourism destination development. 

All the results derived are discussed for the influences they may have in the management 

of the destination and in fostering its development. Moreover, the methods and techniques 

used are evaluated, within the boundaries set, with respect to their usability and usefulness 

as management and knowledge tools. 

Table 5.6 summarises the main activities performed and the methods used in answering the 

research questions. 
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Table 5.6 Summary of the methods used 

Research question Activity performed Methods used 

RQ1: What is the structure 
of the tourism destination 
network? 

Static topological analysis Calculation of main network 
metrics (section 5.5.1) 

RQ2: How can we build an 
evolutionary model that 
reproduces the present 
structure? 

Comparison of actual 
topology with existing 
network evolution models 

Calculation of network 
metrics and degree 
distributions at different 
times (section 5.5.2) 

RQ3: How does the network 
structure affect dynamic 
processes? 

Analysis of network 
robustness and of information 
diffusion 

Edge deletion and 
recalculation of network 
efficiency; SI 
epidemiological infection 
model (section 5.5.2) 

RQ4: How can the network 
be optimised? 

Efficiency optimisation via 
rewiring 

Simulated annealing 
dependent on network 
efficiency (section 5.5.2) 

RQ5: How does this model 
relate to the history of the 
destination? 

Reconstruction of destination 
network at a past time and 
analysis of the evolution to 
present time 

Calculation of network 
metrics and degree 
distributions at different 
times (section 5.5.2) 

RQ6: How do the real and 
technological networks 
compare in a tourism 
destination? 

Comparison of ‘real’ and 
‘virtual’ networks 

Calculation of metrics and 
degree distributions of both 
networks, assessment of the 
topological similarity 
(section 5.5.4) 
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6 Results 

This chapter contains the results of the analysis performed on the Elba destination 

following the methods described previously (Chapter 5). The main objective of this thesis 

was to collect empirical evidence to answer the research questions stated at the beginning 

of this thesis. This chapter provides also an assessment of the validity and viability of the 

methodological approach used. A full discussion of the results presented here and of their 

interpretation is given in the next chapter (Chapter 7).  

Following the analysis path described in Chapter 5, Figure 5.1, the first section of this 

chapter reports the main metrics calculated for the stakeholder network data collected. 

These quantities allow the structural properties of Elba’s destination network to be 

described. Next, the interviews conducted in the destination (using the method discussed in 

section 5.4.2) are used to provide an estimate of the completeness of the data collected. 

In section 6.3 the virtual network formed by the websites belonging to the tourism 

operators is discussed. The main metrics for this virtual network are calculated by using 

the same techniques and algorithms used for the destination stakeholder network and a 

comparison is made of the two resulting topologies and an assessment of their similarity. 

Section 6.4 describes the results of the dynamic study. The robustness characteristics of the 

Elban tourism system are analysed by using a simulation method discussed in section 

5.5.2. In this method the efficiency parameters of the network are calculated while 

removing different sets of edges from the network. Next, an information diffusion model is 

employed to simulate the behaviour of the network in two different conditions. In the first 

case a non-uniform distribution of the single actors’ capacities to transmit the information 

received is assumed. In a second simulation the diffusion is performed by using an 

optimised distribution of the network’s linkages in which the clustering (and efficiency) 

characteristics are increased (while the actors’ capacities are held equal). 

Finally in section 6.5, the historical evolution of the tourism destination is synthesised 

from the outcomes of the qualitative investigation (interviews conducted at the destination) 

and the results are used to infer the network metrics at different times in order to obtain a 

dynamic network growth model.  
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6.1 The Elba network, a static characterisation 

The reciprocal relationships of the almost one thousand tourism operators located in Elba 

are graphically depicted in Figure 6.1. The picture shows a dense connected central core 

surrounded by a sparsely linked set of nodes. A significant number of isolated elements 

completes the network. 

Figure 6.1 The network of Elban tourism operators 

The dense central core is shown enlarged in Figure 6.2. 
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Figure 6.2 A close-up of the central region shown in Figure 6.1 

Observation indicates that the network clearly exhibits a ‘structure’ and this can be 

highlighted by comparing the previous pictures with Figure 6.3 which shows a network of 

the same size (both number of nodes and edges) with a random distribution of the links. 

Figure 6.3 A network with a random distribution of links 
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The main static metrics for the Elba network were calculated following the methods 

described previously (Chapters 2 and 5). The network is considered to be undirected, i.e. 

once a link between two actors has been identified, this is considered to be a symmetrical 

connection. The values are shown in Table 6.1. Most of these metrics do not have an 

‘absolute’ meaning, but can provide useful information on the differences between the 

network structures found and a reference model (null model). A frequently used null model 

is the ensemble of graphs with the same number of nodes and links, in which the links are 

distributed randomly. In what follows, the values for the reference model were calculated 

by averaging 10 realisations of such a random network. The last column of Table 6.1 

shows also the order of magnitude of some significant values pertaining to real social 

networks as reported in the literature (Boccaletti et al., 2006; Dorogovtsev & Mendes, 

2002; Newman, 2003b).  

Table 6.1 The values of the main metrics for the Elba network (random values are averages over 
10 realisations) 

Metric Elba network Random Social networks 
No. of nodes 1028 1028  
No. of links 1642 1642  
Density 0.003 0.003 10-1 - 10-2 
Disconnected nodes 37% 3%  
Diameter 8 13 10 
Average path length 3.16 5.86 10 
Clustering coefficient 0.050 0.003 10-1 
Proximity ratio 34.09 N/A 102 - 103

Average degree 3.19 3.25  
Sum of degrees 3284 3246  
Average closeness 0.121 0.157  
Average betweenness 0.001 0.004  
Global efficiency 0.131 0.169 10-1 
Local efficiency 0.062 0.003 10-1 
Assortativity coefficient -0.164±0.022 0.031±0.033 10-1 (>0) 
Topological entropy 4.527 2.199  

The density of links found is quite low, considering that the values found in the literature 

for the social networks studied are typically of the order of 10-1 – 10-2. Moreover, the 

percentage of nodes that do not have any connections with other elements of the system is 

very high (39%). This results in a sparse network. This sparseness is also confirmed by the 
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small value of the clustering coefficient. The efficiency of the Elban network is 

consequently quite low, both at a global and a local level. 

Another value which is different from what would have been expected in considering a 

socio-economic network such as Elba is the assortativity coefficient. This, as seen in 

Chapter 2, represents the tendency of a vertex to connect with vertices having similar 

degrees. The correlation has been found positive for many of the social networks examined 

by the literature (Newman, 2002b; Whitney & Alderson, 2006), and, while debated by 

some authors (Mitzenmacher, 2004), this positivity is generally considered to be a 

distinguishing characteristic of social networks with respect to technological systems (such 

as the Internet or the World Wide Web networks). 

On the other hand, the calculated values for diameter and average path length seem to be in 

line with those of other real social systems and sensibly smaller than those exhibited by a 

random network, indicating a certain level of compactness of the Elban network, at least 

for what concerns its central connected core. This is also confirmed by the proximity ratio 

which indicates a good level of ‘small-worldness’ of the network (see Chapter 2). 

As discussed in Chapter 2, the most striking characteristic of a complex network is the 

distribution of the degrees of its vertices P(k). The degree distribution and its cumulative 

version of the Elba tourism network are shown in Figure 6.4 and Figure 6.5. The scale-free 

behaviour, and the power-law scaling, of the two distributions is evident; a few actors 

possess the majority of the connections. More than 40% of the total links are due to the 

most connected 20 nodes. The scaling exponent is usually calculated by using an OLS 

(ordinary least squares) linear regression on the log-log plot of the data. It is also 

customary to fit the plot obtained by logarithmically binning the data or by considering the 

cumulative distribution, in order to avoid an excessive weight of the points belonging to 

the long tail of the distribution (Adamic, 2000; Mitzenmacher, 2004; Newman, 2005). By 

using this technique, the exponent of the distribution P(k)∼k-α is α = 2.17.



- 206 - 
 

Figure 6.4 Degree distribution of the Elba network 

Figure 6.5 Cumulative degree distribution of the Elba network 

More recently, however, some authors have argued that these fitting methods may produce 

systematically biased estimates of the degree distribution parameters (Clauset et al., 2007; 

Goldstein et al., 2004). A more sophisticated method proposed is to use maximum 
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likelihood methods for the parameters determination and the Kolmogorov-Smirnov 

statistic to estimate the experimental errors. With these algorithms (Clauset et al., 2007) the 

value calculated in the present case is: α = 2.32±0.27.  

The spectrum analysis of a complex network can provide useful insights in its 

characteristics. As discussed in Chapter 2, the shape of the spectral density ρ(κ) of a graph 

(i.e.: the distribution of the eigenvalues of its adjacency matrix) is known to be an indicator 

of the topological properties of the network. For random graphs with a giant connected 

component it converges to a semicircle following Wigner’s law (Wigner, 1955, 1958). All 

other cases produce different distributions (de Aguiar & Bar-Yam, 2005): a highly skewed 

multi-peaked structure for a small-world network and a triangular shape for scale-free 

graphs. As Figure 6.6 shows, the Elban network demonstrates scale free properties. 

0.E+00

1.E-01

2.E-01

3.E-01

4.E-01

5.E-01

6.E-01

-25 -20 -15 -10 -5 0 5 10 15 20 25
κ

ρ(κ)

Figure 6.6 The adjacency matrix eigenvalues spectrum of the Elba network 

The ρ(λ) spectral distribution of the Laplacian matrix associated with the network is shown 

in Figure 6.7. It can be noted that a high number of the Laplacian eigenvalues are null. This 

provides one more clear indication of the scarce connectedness of the network. The 
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multiplicity of the null eigenvalue, in fact (see section 2.3.4 and 2.6.2), corresponds to the 

number of connected components of the network. 
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Figure 6.7 The Laplacian matrix eigenvalues spectrum of the Elba network 

The modularity (see sections 3.2.5 and 5.5) of the network was calculated by dividing its 

actors with respect to the type of business (hospitality, associations, food and beverage 

services etc.) and to the geographical location (the eight Elba municipalities). As a 

comparison, the modularity was investigated by using the Newman-Girvan algorithm as 

modified by Clauset, Newman and Moore. (2004). The results are shown in Table 6.2. The 

table shows the number of clusters identified (groups) and the modularity index. CNM 

indicates the calculations were performed following the Clauset-Newman-Moore 

algorithm. The last row reports the values calculated (CNM) for a network of the same 

order as the Elba network with a random distribution of links (values are averages over 10 

realisations). To better compare the different results, the last column of the table contains 

the average modularity over the groups (modularity/number of groups).  
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Table 6.2 Modularity for the Elba network  

Grouping No. of groups Modularity Average Modularity 
Geography 9 0.047 0.0052 
Type 8 -0.255 -0.0319 
CNM 11 0.396 0.0360 
CNM (random) 23 0.606 0.0263 

All networks have a very low modularity. In one case (grouping by type), the negative 

value indicates that the actors tend to have more connections outside the group to which 

they belong than with similar businesses. The higher values found by the CNM algorithm 

confirm that division by geography or by type of business does not imply any form of 

clusterisation in these groups. The values obtained for the random network, however, are a 

further confirmation of the very low degree of modularity of the Elba network. 

6.2 Data completeness evaluation 

As discussed in Chapter 5 (section 5.4), the completeness of the data collected is an 

important issue as it may affect the validity of the different measurements in a completely 

different way than in the case of a ‘randomly’ distributed characteristic of a population. It 

has been shown that sampling some of the network elements (nodes or edges) in different 

ways can provide different results. This is even more important when the network under 

consideration exhibits a scale-free topology as in our case. 

Two aspects must be considered: the completeness in collecting the vertices of the graph 

and the completeness in listing the links among them. In the first case, the data collected 

can be considered nearly complete. Looking at Table 5.4 (section 5.4.2) we may conclude 

that the set examined contains almost all the elements (about 95%). The uncertainty in the 

official listings, at most, concerns a limited number of very small businesses which can be 

reasonably assumed not to influence in a sensible way the calculation of the main network 

parameters.  

The connections among the operators were inspected by conducting the interviews 

mentioned in section 5.4.2. With respect to the initial data collection, these interviews have 

revealed a very limited number of connections that were not discovered at first. Even if 

quantifying this difference and extending this estimate to the whole network is very 
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difficult, it seems reasonable to assume that the final layout has a completeness of about 

90%.  

Conservatively, we may therefore assume a 10% confidence level for the completeness of 

the whole ensemble (nodes and edges). Comparing this estimate with the results reported 

in the literature on the subject (Han et al., 2005; Kossinets, 2006; Lee et al., 2006; Rafiei & 

Curial, 2005; Smith et al., 2003; Stumpf et al., 2005a; Stumpf & Wiuf, 2005; Stumpf et al., 

2005b) it is possible to conclude that the calculations of the network parameters are not 

affected in sensible ways by this incompleteness. 

6.3 The technological network 

The network formed by the websites belonging to the Elban tourism operators has been 

studied as described in section 5.5.4 (see also Baggio, 2007, Baggio et al., 2007a). 

The shape of the webgraph is shown in Figure 6.8. The network is considered here a 

directed network. The scale-free structure is, again, clear and is further confirmed by the 

inspection of the distribution of the degrees. Both the in- and out-degree cumulative 

distributions are shown in Figure 6.9. They follow a power law P(k)∼k-α; the exponents 

calculated are: αin = 2.96 and αout = 1.89. 

The main characteristics of this network are listed in Table 6.3. The values are compared 

with common values published in the literature for the World Wide Web (Albert & 

Barabási, 2002; Boccaletti et al., 2006; Caldarelli, 2007; Dorogovtsev & Mendes, 2002, 

Newman, 2003b). 

In general, it is noted that the general connectivity (density, clustering coefficient, 

proportion of disconnected elements, efficiencies) indicate a high sparseness of the 

webspace for the Elban destination. 
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Figure 6.8 The Elban web network 

 

Table 6.3 The main characteristics of the Elba web network compared with common values for 
the whole WWW 

Metric Elba WWW 
No. of nodes 468  
No. of links 507  
Degree distribution   

In-degree 2.96 2.1 
Out-degree 1.89 2.7 

Density 0.002 O(10-1)
Disconnected nodes 21% DCC < 9% 
Average path length 4.5 16 
Diameter 11 28 (in SCC) 
Clustering coefficient 0.003 0.11 
Local efficiency 0.0145 0.36 
Global efficiency 0.1698 0.28 
Assortativity coefficient -0.101 ± 0.094 O (10-1) - negative 
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Figure 6.9 In- and out-degree cumulative distributions for the Elba web network 

The in-degree distribution exponent is higher than the one measured for the Web: αin ~ 2.1 

(Broder et al., 2000). This implies a greater concentration. On the contrary, the out-degree 

distribution exponent is much lower (typical Web value is αout ~ 2.7); i.e. the distribution 

of the links is much flatter and more spread. 

According to the current understanding, the WWW is thought to exhibit a macro-structure 

known as a bow-tie (see section 3.3). By applying this model to our network we obtain the 

results shown in Table 6.4. 

Table 6.4 Bow-tie components calculated for the Elba Web and general values for the WWW 
(as reported by Broder et al., 2000; Kumar et al., 2000b) 

Bowtie components Elba WebNet WWW 
SCC 3% 28% 
IN 2% 21% 
OUT 52% 14% 
TUBE 1% 7% 
TENDRIL 16% 9% 
DCC 25%  
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The comparison with the global values reported for the WWW (Broder et al., 2000; Kumar 

et al., 2000b) shows again that the general connectivity of the tourism destination websites 

is much lower.  

6.3.1 The technological and socio-economic networks: a comparison 

Both networks, the Web and the socio-economic network of Elban tourism stakeholders 

are expressions of the same system: the Elban tourism destination. It is then interesting to 

compare the characteristics of the two graphs to investigate possible similarities. In fact, as 

discussed in the previous chapters, a strand of literature argues that the connections among 

the websites (hyperlinks) may be considered not simply as a technological manifestation 

but also (and probably mainly) as a reflection of social processes. The structure of 

hyperlinks, it is argued, forms patterns based on the designs and aspirations of the 

individuals or organisations who own websites. A growing literature suggests that these 

networks reflect offline connections among social actors and support specific social or 

communicative functions (Jackson, 1997; Park, 2003; Park & Thelwall, 2003). 

Even considering the warnings and the limitations on the validity of this type of 

interpretation, as discussed by Thelwall (2006), in the case of commercial companies’ 

websites, it is reasonable to assume, also for the importance given to the practice of 

hyperlinking (Walker, 2002), that the layout of the network is a reflection of the structural 

characteristics of the social network from which it originates. This relationship between 

cyberspace and the physical world is two-way: on one side, the online linkages represent 

and complement social relations in the offline world; on the other side, offline interactions 

can influence the way in which online relationships are established and developed (Birnie 

& Horvath, 2002; Wellman, 2001). 

Table 6.1 shows a comparison between the metrics calculated for the Elban networks. As it 

can be seen, apart from scale factors, most of the values have differences which are lower 

than an order of magnitude. 
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Table 6.5 Comparison between the main network metrics for the socio-economic (TN) and the 
web (WN) networks of the Elba tourism destination 

Metric TN WN 
Number of nodes 1028 468
Number of edges 1642 495
Density 0.003 0.005 
Disconnected nodes 37% 21% 
Diameter 8 10
Average path length 3.16 3.70 
Clustering coefficient 0.050 0.014 
Degree distribution exponent 2.32 2.17 
Proximity ratio 34.10 12.21 
Average degree 3.19 2.12 
Average closeness 0.121 0.155 
Average betweenness 0.001 0.003 
Global efficiency 0.131 0.170 
Local efficiency 0.062 0.015 
Assortativity coefficient -0.164 -0.167
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Figure 6.10 Cumulative degree distributions for the tourism stakeholders (TN) and the tourism 
websites (WN) networks 
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Another important indicator is the degree distribution which is commonly regarded as a 

signature of the network topology. The cumulative degree distributions are shown in 

Figure 6.10. Considering the undirected version of the web network for compatibility with 

the real one, the exponents of the power-law degree distribution calculated from this data 

are αTN = 2.32±0.269; αWN: 2.19±0.109 (calculations were performed according to Clauset 

et al., 2007). Thus, they can be considered identical within the statistical uncertainty of 

their determination. 

It is known (see Chapter 2) that in most cases, the various quantities characterising the 

topology of a complex network can hardly be regarded as normally distributed, and the 

simple comparison of their averages (arithmetic means) may look insufficient. 

In these cases, as already proposed by some authors (Clauset et al., 2007; Leskovec & 

Faloutsos, 2006), the Kolmogorov-Smirnov (KS) statistic is quite effective. The KS 

D-statistic gives the maximum distance between the cumulative probability distributions of 

the empirical data F(x) and G(x) over the entire x range: 

 )()(max xGxFD x −=

The statistic is nonparametric and it is insensitive to scaling issues. It compares only the 

shapes of the empirical distributions (Siegel & Castellan, 1988). 

Table 6.6 The Kolmogorov-Smirnov D-statistics for the different network metrics (WN = web 
network, TN = real tourism destination network, RN = random network)  

Metric WN vs. TN RN vs. TN 
Degrees 0.119 0.147 
Clustering coefficient 0.147 0.178 
Closeness 0.044 0.083 
Betweenness 0.030 0.077 
Local efficiency 0.125 0.184 

Table 6.6 shows the values for the D-statistics calculated when comparing the quantities of 

the Web network with those of the real network (WN vs. TN). As a reference, the same 

values were calculated for a random sample of the same size as WN, extracted from the 

real network (RN vs. TN: the values are averages over 10 realisations). The consistently 

lower values of the D-statistic in the case of the Web network can be considered as a good 
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confirmation of the similarities of the two topologies (Clauset et al., 2007; Leskovec & 

Faloutsos, 2006). 

6.4 Dynamic processes 

Networks seem to be natural candidates for computer simulations. They can be modelled 

with sound mathematical techniques (graph theory) and they are a sufficiently general 

object with which we represent a wide variety of natural and artificial systems of different 

complexity. Moreover, as has been seen previously (section 3.2), many dynamic processes 

can be defined and studied, all of them quite interesting for scientists and practitioners. 

The first simulation made here concerns the transfer of information or knowledge across 

the network. The objective here is to assess the present situation and to test the capability 

of the destination network in absorbing the knowledge transferred when changing some of 

its structural parameters.  

Figure 6.11 The NetLogo diffusion model 

The NetLogo simulation (Figure 6.11) has been set according to the description in section 

5.5.2. It may be useful to remember here that the model allows the variation of a number of 

parameters: the initial rumour can be spread by a single element or by a certain number of 



- 217 - 
 

elements. At each step a node can tell the rumour to all of its neighbours or only to a 

certain percentage of them. At the end of a simulation run, it is also possible to visualise 

how often the nodes have been told the rumour or how recently they have been aware of it.  

Two series of runs were performed: the first one considered the network in its basic 

configuration and the actors were divided into three categories according to their estimated 

size (large, medium and small). The hypothesis, in this case, was that the capability to 

absorb and transfer information or knowledge is connected with the size of the 

organisation considered (Inkpen & Tsang, 2005; Tsai, 2001). The numbers of tourism 

operators in the different classes is shown in Table 6.7. The size distribution is quite 

typical of Italian and European tourism destinations (EUROSTAT, 2006; ISTAT, 2006). 

Table 6.7 Size distribution of Elban tourism operators  

Size % 
Large 7% 
Medium 16% 
Small 77% 

Almost arbitrarily, it is assumed that the values for the proportion of neighbours informed 

for each time step in the simulations run are set as: plarge = 1, pmedium = 0.8, and psmall = 0.6. 

The second series of runs concerns an ‘optimised’ network. By using the algorithms 

described in section 5.5.2, the destination network was modified in order to achieve a 

higher clustering coefficient and local efficiency. A small fraction (5%) of randomly 

chosen edges was added to the network and the network was rewired until a threefold 

increase in local efficiency and clustering was obtained (see Table 6.8). The network used 

in the simulations was the main connected component of the original Elba network (i.e. the 

network built by excluding all the disconnected nodes after the addition of the new edges). 

Table 6.8 Network parameters used in the simulation  

Metric Elba net Optimised net 
Clustering coefficient 0.084 0.274 
Local efficiency 0.104 0.334 

A random network (same size and density and random distribution of edges) was then used 

as a further comparison. All the results reported are averages over 10 realisations. 
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Figure 6.12 Cumulative diffusion curves (Rnd = random network, EDiff = differential actors 
capabilities, EN = original Elba network, RW = rewired optimised network). 

The results of the simulations are shown in Figure 6.12. The curves represent the 

cumulative numbers of ‘infected’ actors as a function of time N(>T) for the different 

network configurations used. 

The scale-free topology effect is evident in the difference of diffusion speed. It also makes 

clear the difference between the simulations obtained by assigning different capabilities to 

the Elban tourism operators and the one obtained by optimising the network with a 

threefold increase in local efficiency and clustering. 

This effect is clearer when looking at Figure 6.13 which depicts the differential diffusion 

curves N(T). The separation of the peaks is quite remarkable. If we assume that the 

position of this peak is a good indicator of the speed and the ‘efficiency’ of the whole 

process, it is possible to quantify its value by taking the random case as a comparison. The 

results are shown in Table 6.9. 
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Figure 6.13 Differential diffusion curves (Rnd = random network, EDiff = differential actors 
capabilities, EN = original Elba network, RW = rewired optimised network). 

 

Table 6.9 Speed improvements in diffusion over different network topologies (Rnd = random 
network, EDiff = differential actors capabilities, EN = original Elba network, RW = rewired 
optimised network). 

Network T(peak) % improvement 
Rnd 6.1 ---- 
EDiff 5.2 16% 
EN 4.8 22% 
RW 2.9 52% 

An important feature of a complex system such as the Elba tourism destination is the 

capacity to preserve its main characteristics when subject to some disrupting event. The 

robustness of the network can be assessed, as discussed in sections 3.2.1 and 5.5.2, by 

randomly removing the connections among the actors and measuring some significant 

parameter at each deletion. In the simulation performed, the parameters chosen were the 

local and the global efficiencies of the system. As described in section 3.2, the simulation 

applies the model and the procedure discussed by Albert et al. (2000) and Latora and 
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Marchiori (2001). After having calculated the local Eloc and the global Eglob efficiencies for 

the whole network, a random number of links (3%) were removed at each step and the 

parameters calculated again. The findings were compared with a similar simulation 

performed on a random network. 

The results are shown in Figure 6.14 and Figure 6.15. In both, the fraction (f) of the 

original networks after a removal and the efficiency values calculated as a ratio over the 

value for the initial entire network are shown. The efficiency values are the averages over 

10 realisations. As would have been expected (scale-free vs. random networks) the Elba 

system shows a higher robustness in cases of random removals of connections. In 

particular, there is a sudden transition in Eloc at f ∼ 55% for the random network. At this 

value the network can be considered completely disrupted.  

It must be noted, however, that the difference in the behaviours of the two networks is not 

as large as would have been expected (Crucitti et al., 2003). This, again, can be explained 

by considering the characteristics of the Elba network and mainly the fact that a relatively 

flat degree distribution makes it closer to the one of a random network.  
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Figure 6.14 Local efficiency variation as a function of random removal of edges 
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Figure 6.15 Global efficiency variation as a function of random edges removal 

In conclusion, the results of the dynamic analysis reconfirm the fact, known in the 

literature (see for example Boccaletti et al., 2006; Durrett, 2006), that the topological 

structure of the network has a significant effect on both its robustness characteristics and 

the course of the diffusion processes which occur on it.  

6.5 Historical evolution of the tourism destination network 

The Elba history, seen through the discussions with the interviewees, can be analysed by 

looking at the tourists’ overnight stays time series (Figure 6.16) and can be read through 

the lenses of the Butler’s model (see section 4.2.3).  

From the analysis of Figure 6.16 it is possible to identify three main phases. The first 

phase, from the mid 1950s to the mid 1980s, is an expansion phase. After a few years (up 

to circa 1956) in which Elba is discovered by domestic and international travellers, the 

tourist flux starts increasing and the supply side tries to keep the pace of the growing 

number of visitors, although in a relatively confused and non-coordinated way according to 

the interviewees. This is a golden age for the Elban tourism operators, mainly in the 

hospitality sector, despite their limited skills, competencies and capacity to manage their 

businesses. In this period the small enterprises induce the transition to an almost pure 
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tourism economy for the whole island (Tallinucci & Testa, 2006). Practically the whole 

tourism infrastructure present today is built in these years. 

Figure 6.16 Elba overnight stays for the period 1954-2006. The three evolution phases a, b, c 
are discussed in the text (data source: Elba Tourism Board). 

The fast growth reaches a maximum in the early 1980s. Then, a large influx and disordered 

crowding causes a decrease in the number of international visitors, who seem to dislike the 

excesses of mass tourism. This crisis induces a revision, or better a reorganisation, of the 

promotional activities. The local tourism board starts a restyling of the destination brand, 

giving focus to a deeper contact with the natural and cultural resources and putting to the 

background the overexploited ‘sun and sand’ image. 

The second phase brings the destination to a peak, attained in the late 1980s with about 

2,800,000 overnight stays, which is very close to today’s levels. During this phase some 

limits become evident. A very short duration of the seasonal cycle and a lack in 

redistribution of income highlight the weaknesses of an unplanned development for the 

tourism industry. This imbalance is worsened by capital investments made by non-

residents which further reduce the available income distributed on the territory with respect 

to the one generated by the tourists. The fragmentation of the industry is very high with the 

vast majority of operators consisting of small family-run businesses. In the early 1990s, 

then, the destination faces a series of negative national and international events: an 

economic crisis and an increase in the Italian inflation rate, also connected with the exit of 

Italy from the SME (the European agreement on currencies), the German reunification 

process after the fall of Berlin wall, and the war in the Balcans. All these produce a drastic 
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decrease in the numbers of domestic and international tourists, the highest proportion of 

which are Germans. 

The Elban tourism entrepreneurs acknowledge the need for professional retraining and a 

diversification of the local offering with a widened perspective. The Elba Promotion 

Consortium is formed and is financed with European Community funds. It is the first time 

that the destination stakeholders recognise the necessity of a close public-private 

partnership. The process also generates also a series of new initiatives leading to the birth 

of other consortia and to the strengthening of existing associations. 

This push towards collaboration and cooperation is deemed to have caused the subsequent 

growth phase (Tallinucci & Testa, 2006). The end of EU financing, at the beginning of the 

2000s has stopped the Elba Promotion consortium operations. Moreover, in recent years, 

the fragmentation and individualistic culture seems to have gotten the upper hand. The 

poor results obtained in 2002-2004 emphasise these problems, although they seem not to 

be acknowledged by the Elban tourism enterprises. Very recent initiatives may help in 

reversing this negative phase: a new project for the design of a new market-oriented 

product offer, Elba-felix, financed in 2004 by a local bank (Banca di Credito Cooperativo 

dell’Isola d’Elba), and the constitution of a public-private permanent coordinating 

committee for the development of the island. The data in Figure 6.16 seem to show a 

positive tendency for the very last period, but, in the opinion of the interviewees, it is too 

early to be able to draw unambiguous conclusions. 

The very brief history sketched above, allows us to consider Elba a ‘mature’ tourism 

destination (always looking at its history through Butler’s model). It has a long history and 

has gone through a number of different expansion and reorganisation cycles. 

6.5.1 A network based assessment of the destination evolution 

As stated in section 5.5.3, a quantitative assessment of the historical development of the 

Elba network would require a precise knowledge of the configurations at different times in 

the past. This knowledge is not available, at least not at the level required for exact 

calculations, therefore the layout of the network has been estimated by considering the 
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available data on the tourism supply and the interviews conducted as described above 

(section 6.5). 

The period considered (see section 5.5.3) is the beginning of the 1990s (the beginning of 

phase c in Figure 6.16), when the destination started to recover from a period of failure in 

performance concerning the arrivals and overnight stays of tourists.  

First of all, we notice that the basic infrastructure of the tourism supply was not much 

different in the early 1990s than it is today. Figure 6.17 depicts the historical evolution of 

the hospitality industry infrastructure at Elba (data source: Elba Tourism Board). As can be 

seen, the last substantial increase in the number of hotels and bed places dates back to the 

early 1980s. After that period, the supply can be considered constant.  
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Figure 6.17 Evolution of the hospitality infrastructure at Elba (1970 = 100, data source: Elba 
Tourism Board) 

The discussions and interviews conducted at Elba (in the period between November 2006 

and March 2007) have highlighted that most of the associations and consortia present 

today arose in the early 1990s. This has been verified also by checking the foundation 

dates of these organisations in the public records (see Table 6.10). 

With these elements we may formulate the hypothesis that the configuration of the 1990s 

system is a network with the same number of vertices. The edges of the organisations 
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quoted above (17 associations and consortia) have been reduced to 5% of today’s values. 

This is to account for the fact that, even if these were not existing, some part of the 

connections among the operators that would have formed them, was already present. The 

reduction has been performed by randomly choosing the edges to be removed. Ten 

different realisations of this presumed 1990s network were obtained and analysed. 

Although arbitrary and somehow questionable, this seems to be the only possible 

reasonable reconstruction.  

Table 6.10 Foundation dates for the Elban associations and consortia (Note 1: these 
organisations although formally founded as shown, were greatly extended and revitalised in the 
early 1990s; source: public records, see text) 

Association/consortium Year 
Progetto Benvenuti all’Elba 2004 
Trek&Bike Hotels 2004 
Vetrina Toscana a Tavola 2000 
Associazione Albergatori 1960s-1990s 1

Confcommercio 1960s-1990s 1

Confesercenti 1960s-1990s 1

FAITA Associazione Campeggi 1960s-1990s 1

Legambiente Turismo 2003 
Charme Camping 1995 
Cons. Caposantandrea 1990 
Cons. Costa del Sole 1998 
Cons. Elba Promotion 1994 
Cons. L'Elbavoglio 2002 
Cons. servizio.albergatori 1994 
La strada del vino - Costa degli Etruschi 2001 
Consorzio Baia Blu 2005 
Consorzio Laltraisola 2004 

The degree distribution of the links in the original network (E_100) and the reconstructed 

ensemble (E_90) is taken as an indicator of the system’s topology. The results are shown in 

Figure 6.18. 

Besides a size scaling effect, the most striking difference is the cut-off at high degrees k.

This is due to the limitations we have imposed on the connectivity of the network during 

the reconstruction process. The scaling exponents for the two parts of the distribution are 

α1 = 2.22 (the upper segment); α2 = 3.58 (the lower part).  
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Figure 6.18 Cumulative degree distributions for the original labelled as (E_100) and the 
reconstructed 1990s networks labelled as (E_90) 

The first part of the distribution behaviour is consistent with that of today’s network; the 

second one is much higher, indicating a greater concentration in this segment. Since the 

5% limit was arbitrarily set, a further simulation was performed by setting different 

reductions. The results are shown in Figure 6.19. The different limits set are: 10% (E_09), 

20% (E_08) and 30% (E_07). These distributions are plotted along with the E_100 and 

E_90 described above. For the sake of clarity, only the lower part of the distributions are 

plotted. 

An obvious difference in the scaling is noticeable, as is a difference in the ‘bending’ of the 

curves. The important point to notice, however, is that limitations in the ability or capacity 

of high degree nodes to connect other nodes creates some kind of departure from a power-

law behaviour in the degree distributions generating a cut-off at high degrees. This result is 

consistent with some of the models presented in the literature (Caldarelli, 2007; 

Dorogovtsev & Mendes, 2003; Mossa et al., 2002; Pastor-Satorras & Vespignani, 2004) 

and will be further discussed in the next chapter. 
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Figure 6.19 Cumulative degree distributions for the different network reconstructions (lower 
parts) 

6.6 Conclusions: a summary of the main results  

The main characteristics of the network formed by the tourism stakeholders of the Elba 

destination have been assessed (RQ111). The main results can be summarised as follows: 

� the general connectivity is very low (link density) with a very large proportion of 

disconnected elements;  

� clustering is quite limited, and the efficiency is also limited, both at a local and at a 

global level;  

� a very small and negative correlation among the degrees of the nodes has been found 

(assortativity coefficient), i.e. nodes with high degrees tend to connect with nodes 

with low degrees; 

� the modularity of the network does not show any particular grouping and is, 

however, very low; 
 
11 Reference is to the research questions listed in the introduction to Chapter 5 
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� the network shows a scale-free topology (power-law behaviour of the degree 

distributions) which is consistent with the one generally ascribed to many artificial 

and natural complex networks. 

The technological system formed by the websites belonging to Elban tourism operators has 

been examined. Its topological characteristics were found to be very similar to those of the 

‘real’ network (RQ6). 

A number of numerical simulations were performed and the process of information 

diffusion on the network has been examined. The main outcome was the great 

improvement in speed and efficiency of the process when the network was optimised by 

increasing its local efficiency. Changes in the abilities of the single network actors in 

retransmitting the information received had, conversely, a lower impact on the course of 

the diffusion process. A further simulation showed that the robustness of the system with 

respect to random removals of connections is reasonably high (RQ3 and RQ4). 

Finally, the dynamic evolution of the destination network was simulated by reconstructing 

the state of the system at a past period. The results show a limitation effect on the high 

degree portion of the degree distribution curve which shows up as a cut-off in the 

distribution (RQ2 and RQ5). 
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7 Discussion and interpretation 

The results obtained in the analysis of the Elban networks described in Chapter 6 are 

discussed and interpreted here. This provides an answer to the initial research questions 

(see Chapters 1 and 5).  

It is worth recalling here, before starting the discussion, that the main objective of this 

work is to study a tourism destination network from a structural point of view. Therefore, 

all the connections examined are considered un-weighted, i.e. a link between two actors 

does not possess any specific value or characteristic, it merely exists. Moreover, although 

careful attention was given in collecting the maximum amount of data, the resultant 

network (and the results obtained) may still suffer from ‘missing data’ problems (section 

5.4.2). However, even considering these two limitations, the results obtained, as the 

discussion in this chapter will show, are relevant and valid. 

The layout of this chapter follows the presentation of the results reported in Chapter 6. 

First of all (section 7.1) the discussion analyses the static structural characteristics of the 

destination network. The most important issue concerns the assessment of the degree of 

collaboration and cooperation among the different stakeholders. A quantitative 

measurement for this feature is naturally derived from the metrics used for the network 

analysis. The qualitative data gathered during the interviews are used to complete and 

substantiate the interpretation given. The virtual network (websites of the destination 

stakeholders) is considered next (section 7.2). The topological similarity of this network 

with the ‘real’ one is examined and the implications of this result for the analysis of a 

socio-economic system are discussed. The virtual network analysis also allows us to draw 

conclusions on the usage of information and communication technologies by the Elban 

tourism operators. 

Section 7.3 explores the outcomes of the dynamic analysis. Robustness of the network and 

the information diffusion process are reviewed with the assessment of the effects of a 

topology optimisation based on network efficiency. Next, the reconstruction of the 

historical evolution of the destination, based on the qualitative investigation performed, is 

related to simulated network configurations at different times (section 7.4). This allows us 
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to draw a possible network dynamic growth model which is based on the literature on the 

subject (see for example Boccaletti et al., 2006; Caldarelli, 2007) with the modifications 

needed to be adapted to the present situation. 

Finally, section 7.5 examines the main implications of the results presented here for the 

management and governance of the destination and for the organisations involved. 

The chapter closes by summarising the results obtained in this work and by relating them 

to the specific research questions. 

7.1 The Elba tourism destination network: a static characterisation 

The arguments developed in the first chapters (2, 3, and 4) have set the general background 

for the work which has led to this thesis. The object of study is the Elba Island tourism 

destination. As argued, and following a recent and important strand of research (Baggio, 

2006a, 2008; Farrell & Twining-Ward, 2004; Faulkner & Russell, 1997; Russell, 2006; 

Scott et al., 2008b), a tourism destination is a complex adaptive system, and one of the 

possible representations of these systems is a network. With this approach, a model of the 

network formed by the destination stakeholders and their linkages was built (Chapter 6) 

and analysed. 

The static structure exhibited by this model (see section 5.5) can be classified as a scale-

free network. It is a system in which a few actors possess the majority of the connections. 

More than 40% of the total links are due to the most connected 20 nodes. These are the 

most important travel agencies and associations or consortia present on the island from a 

network perspective. They are the main organisations responsible for the connectivity of 

the network which, otherwise, would be completely disjointed. 

This topology is quite common in many artificial and natural networks and has been 

observed also in most of the social networks studied in the literature (see for example 

Boccaletti et al., 2006; Caldarelli, 2007). On the other hand, it is today well known that 

many economic systems, and especially financial systems, exhibit complex fractal 

properties (Bouchaud, 2001; Gopikrishnan et al., 1999; Mandelbrot, 1963; Mantegna, 

1999; Mantegna & Stanley, 2000). Fractal and self-similarity characteristics are typical 
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symptoms of complex non-linear behaviours and are statistically represented by a 

power-law relationship (Komulainen, 2004). Zipf’s law and Pareto’s law, for example, are 

well known principles, both exhibiting a power-law behaviour and are commonly 

considered to be tell-tale signs of complex systems. As would have been reasonably 

expected, the Elba network shows a clear power-law behaviour in the distribution of its 

links. This is a further indication of the complex nature of this socio-economic system. 

Despite this agreement with the general topology of many complex networks, the data 

presented in the previous chapter gives a picture that may look contradictory. While some 

values (diameter, average distance or power-law scaling in the degree distribution) are 

consistent with those generally found in social network analyses, other values exhibit 

significant differences.  

The general connectivity (density of links) is quite low, and a very high proportion of 

disconnected nodes exist. On the other hand the network has a good degree of small-

worldness, and the distribution of the distances among the nodes (in the largest connected 

component) further proves this compactness. The tourism stakeholders appear divided into 

two categories. A good proportion (37%) mainly ‘live by themselves’, disconnected (at 

least apparently) from the others, and pursuing their objectives individually and almost 

independently from the rest of the community. The others (63%) seem to appreciate the 

advantages of collaborating with diverse operators. 

These first conclusions can be studied in more depth by analysing the clustering 

characteristics of the network. Two parameters will guide us in this analysis: the clustering 

and the assortativity coefficients. The clustering coefficient provides a measure of the 

presence of a substructure in a network by emphasising local variations of the link density. 

The phenomenon is close to the one modelled by Watts and Strogatz (1998) in their 

analysis of small-world networks. These are highly clustered networks where any two 

neighbours of a given node have a probability of being themselves connected, which is 

much larger than in a graph where the links are completely randomly distributed. 

Small-world networks have been found to be the structure of a wide range of social and 

economic systems such as scientific collaborations, corporate alliances, friendships, 
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Hollywood actors, Internet web pages, Broadway musicians and production teams in 

business firms (Boccaletti et al., 2006; Caldarelli, 2007; Dorogovtsev & Mendes, 2003; 

Pastor-Satorras & Vespignani, 2004).  

Sociology, and social network analysis, has acknowledged this phenomenon for a long 

time, and concepts such as ‘cliques’ have been employed several times to describe such 

social systems (Scott, 2000; Wasserman & Faust, 1994). Sets of actors in a network who 

are connected to one another by strong relations forming densely interconnected groupings 

are deemed to be representative of some kinds of social structures (Burt, 1980; Fredericks 

& Durland, 2005; Freeman, 2004). 

7.1.1 Assessing collaboration and cooperation characteristics 

In a socio-economic system such as a tourism destination, the concept of clustering 

translates into one of collaboration or cooperation among the network actors. High 

clustering coefficients indicate the presence of local denser groups of linkages implying 

some form of stronger (with respect to the overall average) relationships among the 

elements involved (see for example Boguna et al., 2004; Caldarelli, 2007) . 

The issues of collaboration and cooperation among economic entities (companies, firms, 

associations etc.) have been extensively investigated (see the discussion on industrial 

clusters in Chapter 4). There is a general consensus among researchers and practitioners on 

the benefits of such cooperative arrangements. Even at an individual level, the ability to 

establish and develop successful relationships with other companies is thought to be an 

important competitive advantage. Managing a good set of relationships is a critical factor 

for the achievement of economic development objectives and, as Ritter et al. write (2004: 

181):  

 The challenge for managers is to develop a networking ability that enables them to connect 

their resources to those of other actors. This development is hindered by the lack of 

understanding of the construct, but this does not mean that networking cannot be developed or is 

unimportant. We see the major challenge in cross-relational task development and in 

organizational development towards an open, networked firm. 

Social structures have a significant impact on considering economic outcomes such as the 

productivity of the single or the group, the generation and diffusion of innovative products 
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or of effective governance practices, the exploitation of resources, or the spread of implicit 

or explicit knowledge (Dyer & Singh, 1998; Granovetter, 2005). 

The same phenomenon has been shown to have an even wider importance. It has been 

found, in fact, that in other complex systems such as multicellular organisms or insect 

colonies, efficient information sharing can result in sensible advantages both in reducing 

individual efforts and in improving group organisation, even for cases in which the 

information acquisition has a cost (Lachmann et al., 2000). 

These advantages are particularly important in socio-economic aggregations such as 

industrial districts and clusters (see Chapter 4).  

As discussed previously (section 4.2), these issues have acquired an even higher 

importance in the tourism field. More than other economic sectors, tourism involves the 

development of various forms of collaboration and partnerships (Bramwell & Lane, 2000). 

These interorganisational networks, which can also be seen as composite groups of 

independent suppliers who link together to deliver the final product or service, are the 

essence of a tourism destination. Cooperative and competitive linkages in a destination are 

shaped by both their internal capabilities and by the effects of the external environment 

(Tremblay, 1998, 1999). 

However, the lack of cooperation among the actors of these destination networks is well 

known for the fragmented nature of the tourism industry and the diversity of activities and 

organisations involved. This fragmented nature is considered a main reason for the need 

for cooperation. Many authors (Huxham, 2003; Jamal & Getz, 1995; Roberts & Simpson, 

1999; Timothy, 1998) claim that a tourism system can have a balanced and planned 

evolution only through a process of shared information and decision making with all the 

stakeholders involved. This much sought-after capacity to work together is considered to 

be a crucial element for the success of a destination (Bramwell & Lane, 2000). 

It is clear, then, that the capacity to assess collaborative or cooperative groupings in the 

most rigorous and objective way is important for all those interested in the development of 

a tourism destination. So far, these characteristics have been assessed by using qualitative 

methods such as surveys or focus groups (see for example Jamal et al., 2002; Ladkin & 



- 234 - 
 

Bertramini, 2002). The limitations in reliability of these approaches are well known 

(Bernard et al., 1984; Killworth & Bernard, 1976). 

When representing a tourism destination as a complex network, the clustering coefficient is 

a natural candidate to provide a quantitative measurement of the existence and the extent of 

tightly connected neighbourhoods. This measurement, obviously, can hardly deliver 

definitive conclusions as it considers only the topological structure of the destination 

network. The coupling of this metric with more traditional qualitative assessments, 

however, can provide a powerful combination able to gauge this phenomenon and to 

complement (and validate) other possible investigations (see Chapter 2). 

One more quantity measurable for a network can complete this picture: the assortativity 

coefficient. It measures the extent to which a correlation exists between the degree of a 

node and those of its neighbours. In assortative networks, well-connected elements tend to 

be linked to each other. Most social networks exhibit this characteristic. Someone who is 

particularly sociable and friendly is very likely to know also the other most sociable 

people. If a company has an operational or economic connection with some other 

organisations, it is probable that these latter will have common connections among 

themselves (Chapters 2 and 3). These relationships look to be a distinctive trait of a social 

system, as McPherson et al. write (2001: 415): 

Similarity breeds connection. This principle - the homophily principle - structures network ties 

of every type, including marriage, friendship, work, advice, support, information transfer, 

exchange, comembership, and other types of relationship. The result is that people’s personal 

networks are homogeneous with regard to many sociodemographic, behavioral, and 

intrapersonal characteristics. 

The results presented in Chapter 6 give a very low value for the clustering coefficient of 

the Elba network and a low and negative value for the assortativity coefficient. The 

conclusion is, therefore, that our destination shows a substantial lack of cooperation or 

collaboration among the stakeholders. 

This inference is in agreement with a series of considerations that emerged during the 

interviews conducted at the destination and with the results of previous studies (Pechlaner 

et al., 2003; Tallinucci & Testa, 2006). The origins of Elban tourism activities go back to 
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the early 1960s. They arose as a complementary source of revenue for many families still, 

at that time, employed in the mining industry (see also Chapter 4). The growth of tourist 

numbers was almost spontaneous up to the 1980s, due mainly to the attractiveness of 

Elba’s natural resources. As Tallinucci and Testa say (2006: 33): “it was not the island to 

choose tourism, it was tourism to choose the island”. 

A diffuse geographic distribution of small family-run businesses, with a strong 

independence and a high rate of loyal guests producing good word-of-mouth promotion, 

are the main original characters of the tourism industry at Elba, and they have survived up 

to the present time. These conditions have supported the spontaneous, unregulated 

development of the destination, in which possible incentives to aggregation have 

traditionally been contrasted by the individualism of the single operators. It was only after 

crisis periods, such as those that occurred in the mid 1980s and in the early 1990s, that 

coordination and planning activities acquired some momentum.  

The low value for local efficiency is a direct consequence of today’s sparse structure of the 

network. It is, in fact, closely related to the clustering coefficient (Latora & Marchiori, 

2001). The low efficiency translates directly into a low capability of the network actors to 

transmit information and knowledge (see Chapter 2). This fact threatens to worsen the 

capability of the destination stakeholders to be able to react, as a system, to the effects of 

external events. In essence, a low efficiency of the system is detrimental for its capacity to 

achieve good results. With this assumption it might be possible to partially explain the 

decreasing number of overnight stays in recent years (see Figure 6.16).  

The substantial agreement of the interpretation given to the clustering and assortativity 

coefficients with the general picture of the relationships among the Elban tourism operators 

supports the use of these coefficients as quantitative assessments of the extent to which the 

tourism organisations work together collaborating or cooperating, i.e. forming cohesive 

communities inside the destination. The clustering coefficient can be thought of as a static 

measurement, while the assortativity coefficient can be interpreted as expressing the 

tendency to form such communities (see also Baggio, 2007). 
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7.1.2 Modularity features 

A further way to assess the clustering characteristics of the Elban network is to study its 

modularity characteristics. The homophily principle quoted above, interpreted in an 

interorganisational network as similarity between companies with respect to ‘routines and 

competencies’ (Staber, 2001: 546) can be verified by looking for some structural 

characteristic of the network. 

Many complex systems have shown the presence of subgroups, in which the density of 

linkages varies. Multiple clusters of actors can occur as cliques where intracluster relations 

are denser than intercluster relations. This modularity characteristic, as discussed in 

Chapter 3, has no common definition, but, generally, it is assessed with some numerical 

algorithm designed to maximise the modularity of the network when adopting different 

partitionings of the actors. 

In the case of Elba, first of all, the study examined if ‘natural’ grouping of the tourism 

operators exhibits significant modularity characteristics and, in particular, if they tend to 

group together based on the similarity of their businesses (hotels, intermediaries, service 

companies etc.) or on geographical proximity (the eight municipalities in which Elba is 

administratively divided). 

The results obtained show a very low level of modularity. Elban operators look, even from 

this point of view, quite disconnected. When looking at the modularity of the ‘type of 

business’ division, a negative value for the modularity index was found (-0.255). A 

negative value tells us that operators of the same typology tend to have more links 

connecting them with a different group than among themselves. It is possible to see in this 

lack of will to connect similar entities a clear sign of a strong ‘competitive’ attitude. 

This apparent lack of collaboration among operators belonging to the same type has proved 

to be detrimental when thinking about the capacity of innovation which might help them 

face the challenges of the contemporary highly competitive and globalised market. It has 

been shown, in fact, that a collaborative approach and intense exchanges, even in 

seemingly competitive organisations such as the group of Sydney hotels described by 
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Ingram and Roberts (2000), may allow a valuable amalgamation of best practices, with the 

result of improving the performance and profitability of the whole group and its members. 

It is interesting to note, in the results of the analysis (Table 6.2), that the highest modularity 

value is obtained with the usage of a ‘generic’ numeric algorithm, the one proposed by 

Clauset et al. (2004). The topology of the network shows limited modularisation (i.e. the 

values of the modularity indices are quite low). This community structure, in the common 

understanding of the phenomenon, can be considered better than the others which can be 

found based on different criteria (Arenas et al., 2004; Danon et al., 2005). 

As can be seen in Table 6.2 (Chapter 6), the number of clusters found is different from the 

number found when considering the other types of grouping used (mainly the other 

positive one, the geographic division). Moreover, the clusters are composed of members 

belonging to different groups (as for geography and typology). The system, in other words, 

exhibits self-organisation properties which lead to the formation, to some extent, of some 

agglomeration of ties and produces a number of informal communities and an informal 

community structure.  

It can be concluded that the information contained in the geographical or business typology 

data does not represent fully the communality characteristics. The network topology shows 

how these data provide non-optimal modularity solutions when geographic or typology 

groupings are used. This evidence has been also found in other social networks (Minerba et 

al., 2007).  

From a destination management viewpoint, this result is important. It can provide 

indications on how to optimise some performance, for example, optimal communication 

pathways or even productivity in collaborations, overcoming rigid traditional subdivisions 

(administrative, for example). It can provide a more practical tool to go along with the 

ideas and practices of an adaptive approach to the management of a tourism destination 

which has been advocated by some scholars as discussed in Chapter 4. 

A word of caution is necessary, mainly when considering extending the considerations 

made on network clustering and modularity to other cases. It has been shown, for example, 

that the value of the clustering coefficient in a network can be also accounted for by a 
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simple random graph model in which edges are placed at random, under the constraint of a 

fixed degree distribution P(k). In other words, the emergence of this effect can also be a 

kind of ‘statistical fluctuation’, a mere topological property due to the form of the degree 

distribution that disappears in the thermodynamic limit (number of vertices N→∞), but 

able to produce noticeable values in finite networks (Newman, 2003a; Newman et al., 

2001). A correct interpretation of the result, therefore, can only be achieved by 

complementing the quantitative assessment with a deep knowledge of the social system 

under study, which typically comes from a tradition of qualitative investigations. 

7.2 The technological network 

The analysis of the website network belonging to the Elban tourism operators has shown 

results which are quite similar, from a qualitative point of view, to those of the ‘real’ 

network. Summarising, it is possible to say that: 

� the results show a general agreement with similar results obtained by studying the 

Web and website configurations, with the exception of the bow-tie model (section 

6.3); 

� the network’s most striking characteristic is its low connectivity and high sparseness 

(section 6.3); 

� moreover, a very small and negative correlation among the degrees of the nodes has 

been found (assortativity coefficient, see section 6.3). 

As happens in many tourism destinations in the world, Elba’s tourist enterprises consider 

the Internet as an open window on the world, able to improve their communications with 

actual or potential guests and to favour their promotional activities.  

A 2002 survey of Elban operators (Pechlaner et al., 2003) revealed a diffuse usage of 

Internet technologies with an extremely high rate of self-made websites (31.9%) and a 

sound preference for direct contact with the customers (80%) in order to increase loyalty 

and create individual brands to link with the destination image of Elba. According to a 

recent survey by the statistics bureau of the Toscana region (SSSR, 2006), almost 80% of 

the hospitality structures make extensive use of ICTs, 90% have some kind of visibility on 
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the WWW either because they own a website (62%) or because they have some pages 

contained in portals belonging to institutions or other private companies. 

When considering the data presented about the technological network, it is possible to 

interpret the low connectivity and modularity (i.e. low and sparse number of connected 

communities or clusters) and the low efficiency as a waste of resources both from a 

technical and an organisational point of view. The Elban tourism operators appear to be 

missing out on the advantages of collaboration and cooperation mechanisms on the Internet 

that could greatly improve the organisation and management of the destination and its 

capacity to face a highly competitive globalised market. The benefits of sharing 

technological resources and functionalities should be well known and have been 

emphasised several times (Barua et al., 2000; Hackathorn, 2003; McLaren et al., 2002; 

Walker, 2002). The operators of Elba, on the contrary, look to have neglected these 

benefits. This inadequate usage of advance communication technologies may explain the 

relatively poor performance recorded. The Toscana region survey (SSSR, 2006), for 

example, measures a scant 37% of hotel electronic bookings for the 2006 Easter holidays. 

As a comparison, the estimate for the whole European industry in 2006 is about 50% 

(according to JDP, 2006). 

The Web visibility of the tourism operators is also at risk. New generation search engines 

are already available online. They strive to supply more relevant responses to users’ 

queries by analysing the modular structure of the Internet and trying to locate websites on 

the basis of their belonging to distinct thematic communities (Lehmann & Hansen, 2007; 

Liu et al., 2006). IGroup (igroup.msra.cn), a Web image search engine or Clusty 

(clusty.com), a textual metasearch engine, for example, work along these lines and 

organise the search results into semantic clusters (Jing et al., 2006; Moghaddam, 2007). 

From a strategic development perspective, the situation is even more problematic. Future 

search engines and recommendation systems, in fact, will be based on dynamic agents 

whose main task is the dynamic identification of connected communities on the Web 

(Adamic & Adar, 2003; Adomavicius & Tuzhilin, 2005; Lawrence, 2000; Skopal et al., 

2003).  
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Those websites of tourism operators in destinations not forming well recognisable network 

‘communities’ through dense interconnections will be difficult to reach by a casual user. 

This will have, obviously, unfavourable consequences for the effectiveness of the 

marketing and communication activities and their economic outcomes. 

7.2.1 The virtual and the real network, a comparison 

In a paper published a few years ago, Wellman (2001: 2031) suggests a close relationship 

between a computer network and the social network of the people using it. In his words: 

“computer networks are inherently social networks, linking people, organizations, and 

knowledge”. Quite a number of other studies have, in one way or another, maintained a 

similar interpretation (Haythornthwaite & Hagar, 2005; Matei & Ball-Rokeach, 2001; 

Park, 2003).  

In many other fields, the Internet and the WWW network have provided the basic materials 

with which network scientists have significantly improved our comprehension of how 

systems of any kind, not only computerised, are structured or behave (Barabási & Albert, 

1999; Faloutsos et al., 1999; Watts & Strogatz, 1998). Examples are the analyses of social 

networks deduced by the exchange of e-mail messages (Tyler et al., 2005), by hyperlinked 

individual webpages (Adamic & Adar, 2003; Park, 2003) or by the websites of similar 

organisations (Pennock et al., 2002).  

Social network analysis (SNA) has for many years collected results on the formation and 

the evolution of human, social and economic relationships, on the importance of some 

positions in the web of connections we have, and on how to use these outcomes to steer 

and to encourage the development of a community, a company or a society (Wasserman & 

Faust, 1994).  

As discussed in section 5.4, one major problem faced by social network analysis has 

always been the collection of the data needed for the analyses. Many methods have been 

devised and many techniques have been proposed to allow the extraction of meaningful 

insights from the sometimes scarce records a researcher is able to collect on the elements 

and linkages of a social network (Marsden, 1990). On the other hand, the outcomes 

obtained by the contemporary network scientists could be used to improve this work. But 
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these are typically coming from huge quantities of data and at least an adequate and 

reliable amount of it is needed to highlight structures, differences, patterns and to trace 

evolutionary processes and developments. 

The Web has been seen as a good candidate to provide this amount of data and several 

studies have followed this direction creating a discipline called hyperlink analysis (Park, 

2003). It is reasonable to assume, also for the importance given to the practice of 

hyperlinking (Walker, 2002), that the layout of the network can be a reflection of the 

structural characteristics of the social network from which it originates. This relationship 

between cyberspace and the physical world is two-way: on one side, the online linkages 

represent and complement social relations in the offline world; on the other side, offline 

interactions can influence the way in which online relationships are established and 

developed (Birnie & Horvath, 2002; Wellman, 2001). 

Some have argued and warned of the risks and dangers of this approach. They claim that 

the links are built in a rather unpredictable way, and it is not possible to find unambiguous 

meanings (Thelwall, 2006). While this can be true when thinking of webpages built by 

individuals, the situation looks different for private or public organisations. We see more 

and more cases in which the practice of hyperlinking is regulated. In these, the presence of 

a link reflects a specific choice made by the website owner. A link is considered to be a 

strategic resource, and the possible variations in the structure of the ‘corporate’ WWW are 

shaped by specific communicative aims, rather than by random technological processes 

(Birnie & Horvath, 2002; Vaughan et al., 2006). 

A scrutiny of corporate websites belonging to diverse industries (140 of them have been 

inspected) shows that a vast majority (87%) publishes some form of ‘instructions’ and 

legal disclaimers about the website and its contents. All of them specifically address the 

issue of linking. They state how and when permissions must be sought before a connection 

can be made to the organisation's website. Moreover, the analysis of a number of internal 

documents shows that carefully defined policies regulate the publication process for all the 

contents of a website, including the hyperlinks to other organisations. In a series of 

enquiries conducted elsewhere in Italy, more than 400 tourism operators, grouped in a 

number of associations or consortia, were informally asked to describe the process in place 
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to update their websites. All of them, even those relying on some form of technical 

outsourcing, stated that the insertion of a link towards a different ‘entity’ is decided largely 

on a business basis. More specifically, links to companies belonging to the same sector of 

activity are only present when some kind of collaboration agreement exists (Antonioli 

Corigliano et al., 2007; Baggio, 2006b, 2006c). 

A more rigorous study on the web networks of two tourism destinations, the island of Elba 

(Italy) and the Fiji islands (Baggio et al., 2007b), shows that 68% of their links connect 

other tourism companies in the same area, 3% link non-tourism companies in the same 

area, 22% link tourism organisations outside the area, and the remaining 7% are generic 

broad interest links. 

These outcomes, however, could be classified as presumptive evidence. A better way to 

specify the relationship between the virtual and the real network of a socio-economic 

system (a TD in the present instance) is to look for similarities and differences in their 

topological structures. The comparison made on the characteristics of the real Elba 

network and the virtual one (section 6.3.1) reveals a very good topological similarity of the 

two networks.  

Clearly, full equality cannot be claimed, but the results legitimate the web as a significant 

sample of the underlying socio-economic network. The obvious limitation is that the 

comparison holds when considering ‘institutional’ websites, belonging to companies, 

associations or other institutions. Additionally, the area taken into account must show a 

quite high usage of the Internet and the Web. Yet nowadays, for a large part of the world, 

this is not a severe limitation. 

By carefully applying the considerations made in the literature (see for example Kossinets, 

2006; Lee et al., 2006) on the handling of samples of networks, the WWW can provide an 

effective environment to study the characteristics and behaviour of social and economic 

systems formed by companies, corporations, associations and other such entities. Tools and 

methods of the science of networks can thus be extended to these important components of 

today’s world. 
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This result is even more important for the field of tourism. Quantitative network analysis 

methods can provide more possibilities to improve and complement our qualitative 

knowledge of these structures. Moreover, the network approach can be extended to 

implement simulation models with which different scenarios can be obtained in order to 

explore the possible effects of different managerial activities. Finally, regular scanning of a 

tourism destination webspace can provide evidence of dynamic transformations of the 

network, thus easing the analysis which, otherwise, would be quite difficult given the 

complexity of performing a traditional investigation. This can give all people interested in 

the life of a tourism destination powerful tools to inform their policy or management 

actions. 

7.3 Dynamic processes 

Network dynamic processes are strongly influenced by the underlying topology (see 

Chapter 3). The small-world characteristics have been shown to enhance the performance 

of many processes as compared to regular or random lattices. This is a direct consequence 

of the presence of shortcuts that accelerate the communication between otherwise distant 

nodes and of the relatively short distance between any two vertices (Latora & Marchiori, 

2001; Zanette, 2002). On the other hand, the heterogeneity of the link distribution in scale-

free networks strongly affects the development of processes that they support. For example 

(probably the most remarkable one), it is known that an epidemic disease will spread 

completely in a scale-free network (at the thermodynamic limit, i.e. for an infinite number 

of nodes) regardless of its infection rate, while in a random network, a critical threshold 

density of connections must be achieved before being sure that the diffusion process can 

reach all the nodes of the network (Barthélemy et al., 2005; Pastor-Satorras & Vespignani, 

2003). 

Once the basic topology of the network is established, the models discussed in the 

literature can provide a guideline for understanding the behaviour of the system when 

some important dynamic processes take place. In particular, for a socio-economic system 

such as a tourism destination, two phenomena are of particular interest. The first is the 

ability to maintain its fundamental properties when it is subject to some disrupting event, 
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and the second involves the capacity of the system to act as a substrate for the diffusion of 

information and knowledge. 

One of the advantages of the network representation, as discussed in the previous chapters 

(see Chapters 2 and 5), is the opportunity to investigate these phenomena by using 

computer simulations. More than giving accurate descriptions and explanations of 

phenomena, numerical simulations allow experiments to be performed in fields where 

these would be not feasible for both theoretical or practical reasons. The power of a model 

lies in its capacity to allow ‘playing’ with it, exploring different possibilities, different 

configurations, and to derive useful predictions on some characteristic of the system. 

Numerical simulations have been used to analyse the two phenomena quoted above. The 

soundness of this approach comes from a methodological point of view. It is known from 

the literature, in fact, that the most important determinant for the validation of a model lies 

in the design of the conceptual model (Adrion et al., 1982; Balci, 2003). The models used 

in our case are well known and have been described and used several times to assess 

similar situations (see Chapters 4 and 5). 

The robustness of a complex system and the preservation of its fundamental properties 

even in presence of external (or internal) disastrous events is, as seen in Chapter 2, one of 

the features of such (complex) systems. In the case of Elba, a certain degree of resilience 

(the term usually employed to define this property) has been estimated already by using 

different methods (Baggio, 2008). Here a ‘network’ approach was used. The progressive 

deletion of linkages among the destination actors confirmed this result. It also confirmed 

the common understanding of this phenomenon in complex scale-free networks.  

In the results obtained, however, it must be noticed that the difference in the behaviours of 

the networks considered (Elba and a random network) is not as large as would have been 

expected from the literature (Albert et al., 2000; Crucitti et al., 2003, 2004b). This has been 

ascribed to the characteristics of the Elba network and mainly to the flattish degree 

distribution which makes it closer to a random network than a ‘typical’ scale-free graph.  

Elba’s network is more robust than a random network, but its robustness is quite fragile. In 

this case, both theory and models predict that the only possibility for achieving a better 
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capability of the Elba network to resist random shocks which might reduce its information 

transfer efficiency is a thorough reconsideration of its connectivity characteristics. In other 

words, a higher resilience of the system can be obtained by causing an expansion in the 

number and type of linkages among the tourism operators so as to increase the scale-

freeness of the network and its clustering properties. This can be directly translated into a 

clear direction for the design and implementation of policies for the destination. 

The same indication, reinforcing this conclusion, comes from the second set of simulations 

performed on the diffusion mechanisms. In this case, two conceptually different situations 

were simulated. The first one considered the stakeholders of the destination as elements 

with different capabilities to acquire and consequently retransmit information or 

knowledge. The second one assessed the effects of a change in the topology of the network 

obtained by optimising it with respect to its efficiency. 

The basis for the first simulation is the idea that particular actors can have difficulties in 

acquiring and retaining all the knowledge available to them due to their internal 

functioning or because of the associated costs. This feature is usually called absorptive 

capacity, an important construct introduced to organisational studies by Cohen and 

Levinthal (1990). It refers to the capability of a firm to recognise, absorb and exploit 

knowledge from the environment. Building up and sustaining absorptive capacity is 

deemed to be a critical factor for the development and success of an organisation (Tsai, 

2001). A rich literature has studied the effects and motivations for the establishment of a 

good level of absorptive capacity. At a basic level, this is, without doubt, connected with 

the organisational capacities and with the extent to which a firm is able to exploit all the 

available resources. It can also be connected with the firm’s size (see the review in Lane et 

al., 2006). In a very concise way, “firms with higher absorptive capacity are more likely to 

establish knowledge linkages with other local firms” (Giuliani & Bell, 2004: 4). 

The measurement of the speed of diffusion, and the form of the diffusion curve obtained 

(Chapter 6, Figure 6.12 and Figure 6.13) confirm, first of all, the improvement in the 

efficiency of the whole process due to the existence of a structured network in place of a 

randomly linked system. The results are also a confirmation of the importance of the 

capacities of the single operators. There is a clear improvement in diffusion speed when all 
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the actors are considered to have the same capacity to transfer information or knowledge. 

This is an important indication for a destination manager; putting in place measures and 

actions aimed at reducing the differences in the absorptive capacities of the destination 

stakeholders can have a highly beneficial impact on the overall system.  

However, the second simulation results indicate that a similar effect, but with an even 

higher magnitude, can be obtained by optimising the network efficiency. The exchange of 

information among the nodes, that is the ‘physical’ meaning of efficiency (see Chapter 2), 

is much improved if the connectivity of the network is modified so as to increase the local 

efficiency, and consequently the clustering coefficient. 

This shows that a very important determinant for the spread of knowledge in a 

socio-economic system such as a tourism destination is the presence of a structured 

topology in the network of relations that connect the different stakeholders, and more than 

that, the existence of a well-identified degree of local cohesion. This supports the notion 

that destination stakeholders should be encouraged to form clusters and to both compete 

and cooperate in order to exchange knowledge and hence to raise the overall 

competitiveness of the destination. Often the public sector intervenes to initiate such 

cooperative processes, given the competitive nature of SMEs. Public sector support can 

facilitate a network and provide ongoing support, but it is the destination stakeholders who 

must operate the network. 

The network simulation has thus reconfirmed a known principle in industrial economics 

and destination management studies. As discussed in Chapter 4 (see also Becattini, 1990; 

Bramwell & Lane, 2000; Porter, 1998), a large number of researchers maintain that the 

most significant determinants for the competitive advantage of a district (or an industrial 

cluster) are in the speed and the efficiency of the circulation of information and 

knowledge. The Marshallian industrial atmosphere (Marshall, 1920) has an essential role 

in the creation of the entrepreneurial culture within cohesive groups of firms, with the final 

effect of expanding and strengthening the system and of generating positive externalities. 

Quantitative network methods, such as those used here, can, therefore, not only assess this 

effect, but, more importantly, give practical indications on how to improve the process. By 
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performing different simulations with different sets of initial parameters (distribution of 

absorptive capacities or different levels of clustering), it is possible to obtain different 

settings and evaluate the effects of the choice of parameters on the final result.  

From the network science point of view, these results are not completely new. The effect 

was identified by Granovetter (1973, 1983) as the strength of weak ties and reconfirmed by 

the more recent works on small-world networks (Latora & Marchiori, 2001; Uzzi & Spiro, 

2005; Watts & Strogatz, 1998), and by several other authors empirically (Reagans & 

McEvily, 2003; Sorenson et al., 2005). Here, for the first time, a tourism destination is 

used as test case. 

By coupling the theoretical and analytical approach with a detailed understanding of the 

destination and its stakeholders, it has been possible to diagnose the efficiency of the 

destination’s network structure and its implications for competitiveness. It is also possible 

to utilise policy instruments to intervene and to make the network more efficient. In other 

words, in our case, the simulations can be used to create development scenarios in which 

the efforts to move towards strong forms of collaboration are increased, even if at a very 

‘local’ level. This can be highly beneficial not only for the stakeholders involved, but for 

the whole destination. 

Moreover, the same simulations can be employed in the understanding of how deep, fast 

and efficient the spread of a message through the system can be. This can be of further help 

for a destination management organisation wishing to communicate effectively with the 

stakeholders. 

7.4 Simulated evolution of the Elba destination 

A simulation approach was used to trace the evolutionary history of the destination 

because of the difficulty in collecting precise data on the modifications of the network over 

time. The method used was a semi-qualitative one. As discussed in the previous chapters, 

the probable set of connections and actors was deduced from a number of sources, the first 

being the series of interviews conducted at the destination (see Chapter 6). The others were 
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the checks made on the evolution of the Elban tourism infrastructures made on the data 

provided by the local tourism board. 

The framework for the interpretation of the destination’s evolution follows (see Chapter 6) 

the generally accepted model proposed by Butler (1980). The analysis performed on the 

reconstructed network of Elba tourism stakeholders can enter this framework to explain at 

least some of the mechanisms which are at the basis of the evolution of such a network. 

First of all it must be noted that the vast majority of the network growth models reported in 

the literature, whose outcomes are scale-free networks such as the Elban one, utilise the 

basic ‘preferential attachment’ mechanism proposed by Barabási and Albert (1999). In this 

model the network grows with the creation of new nodes and the probability for a new 

node to create a link to an existing one depends on the degree of the attached node, i.e. the 

higher the number of links a node has, the higher the probability to form new connections. 

This basic mechanism can be modified by introducing a number of possible variations. A 

node can have a high ‘fitness’, which increases the probability of receiving links even if it 

is a newcomer. Factors such as cost limitations in forming connections, aging of nodes that 

stop creating links after a certain period of time, spatial confinements of the network or 

finite lifetimes can be introduced. The result is, in all these cases, a degree distribution 

which scales as a power law, while some of the constraints can generate slight 

modifications such as changes in the slope of the curve in some region (Boccaletti et al., 

2006; da Fontoura Costa et al., 2007). 

By examining the results of the simulated reconstruction, the most striking result is the 

difference in the shape of the degree distribution. The ‘old’ network, although exhibiting a 

general power-law behaviour, shows a clear cut-off at high nodal degrees. This cut-off 

disappears in the degree distribution of the contemporary network. 

From a topological perspective this means that at a certain point in time, high degree nodes 

have connected with only a fraction of the nodes they would have connected with in a pure 

preferential attachment condition. In the subsequent period of time, the network grows 

with the addition of nodes and links, and the high degree nodes complete their ‘links 

budget’.  
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As already stated, to be meaningful, this quantitative idea must be coupled with the 

knowledge of the system under study. In our case, among the different network growth 

mechanisms reported in the literature, the constraint mechanisms which look more suitable 

are those related to the level of information network actors have about the rest of the 

system. A number of studies (Mossa et al., 2002; Štefančić & Zlatić, 2005) have 

highlighted that information filterings are responsible for truncations in the power-law 

behaviours of the degree distributions.  

This phenomenon is known in the economic literature as bounded rationality. Introduced 

by Simon (1955a; 1997), it contrasts the game-theoretical idea of an economic agent able 

to make decisions based on rational examination of the possibilities it faces. The concept 

serves to overcome some of the limitations of the (over)simplifications of this approach 

which disregards the “psychological limits of the organism (particularly with respect to 

computational and predictive ability)” (Simon, 1955a: 101). On the contrary, Williamson 

(1981: 553) states: “boundedly rational agents experience limits in formulating and solving 

complex problems and in processing (receiving, storing, retrieving, transmitting) 

information”. 

In our case, we can use this interpretation by stating that, during an early stage of the 

destination’s evolution, high fitness actors exist, but they have not yet connected to others. 

This happens because they probably do not feel such a necessity or because they have not 

yet recognised the existence of other stakeholders or because the social rules for interaction 

have changed over time. Larger organisations or associations, generally responsible for the 

higher degrees in the network, still have to establish a link with the newer nodes (following 

Mossa et al., 2002). Or, somehow symmetrically, the new nodes create links by using a 

preferential attachment method, but exert this ‘option’ only on a fraction of all the existing 

nodes because of a limited knowledge of the magnitude of the whole network due to their 

‘young age’ (as in the proposal by Štefančić & Zlatić, 2005). Whatever it is, the limitation 

in (some of) the nodes’ ability to process information about all the other nodes of the 

network is able to generate the exponential truncation found in the degree distribution of 

the network. 

It is interesting to note, as does Mossa et al. (2002: 4), that: 
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In the context of network growth, the impossibility of knowing the degrees of all the nodes 

comprising the network due to the filtering process – and, hence, the inability to make the 

optimal, rational, choice – is not altogether unlike the ‘bounded rationality’ concept of Simon 

(1997). Remarkably, it appears that, for the description of WWW growth, the preferential 

attachment mechanism, originally proposed by Simon (1955b), must be modified along the lines 

of another concept also introduced by him – bounded rationality (1997). 

This interpretation has been used to explain the difference (similar to the one found for the 

Elba network) between the networks of two different tourism destinations (today’s Elba 

island and Fiji) which are reputed to be at different evolutionary stages according to 

Butler’s model (Baggio & Antonioli Corigliano, 2007; Baggio et al., 2007b).  

With this theoretical apparatus, combined with the one coming from the study of tourism 

destinations, the history of the Elban network can be described in the following way. 

The destination starts its life cycle when it is discovered by the visitors and some reception 

facilities are implemented: the exploration and involvement phases of Butler’s model. The 

destination enters then a development stage in which the supply infrastructures spread over 

the territory. At this point it is reasonable to suppose that the network is a rather sparse and 

disconnected system in which a few links exist, and they are mainly established in a 

random way. This is in agreement with the initial stages of most network growth models. 

The consolidation and possible stagnation phases see a relatively slow increase of the 

network’s linkages. In this situation, the network starts assuming its scale-free 

characteristics. The preferential attachment mechanism drives the evolution. Destination 

stakeholders (mainly the small ones) establish connections with some of the other fitter and 

larger actors, typically intermediaries, and self-organise forming (embryonic) associations. 

In this phase the cohesiveness of the network is still very low, showing very limited 

degrees of collaboration and cooperation among the tourism operators. New elements of 

the network still arise but they or the most connected nodes have only incomplete 

information about the overall network size and, therefore, do not still create all the possible 

connections. The network shows a clear tendency towards a scale-free topology, but the 

information limitations produce a bending in the degree distribution at high degree values. 
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The number of nodes is now stable. The stagnation phase, in Butler’s model, can give rise 

to a rejuvenation or to the decline of the destination. In the case of Elba, this corresponds 

to the 1990s break. The combination of both external (improvement in the economic 

conditions and the start of EU financed projects) and internal (basically the realisation of 

the need for new forms of cooperation) events produce, as seen above, a new growth 

phase.  

From a network viewpoint, this coincides with a growth in the density of links, the 

completion of the large actors linkage potential, the straightening of the degree distribution 

which tends to a ‘purer’ power law and an increase in the clustering of the network.  

The scenario depicted above justifies well the empirical results. Moreover, it allows us to 

establish a relation between the evolution of the destination network and the outcomes in 

terms of the measured tourist fluxes. 

These results reconfirm those obtained by other authors who have examined the influence 

of the structure of a destination network on its development. For example, Pavlovich, 

studying the New Zealand Waitomo destination (Pavlovich, 2001, 2003a; Pavlovich & 

Kearins, 2004) has shown how the relationships between stakeholders can act as a self-

organising mechanism for the destination, and demonstrated the role and function of the 

aggregated patterns of interconnectivity in understanding the formation and development 

of strategic capabilities that belong to the network. The structural embeddedness proves to 

be able to assist or inhibit organisation within networks and to favour, through the 

formation of heterogeneity and interconnections, the reciprocal flows of resources and 

information. These greatly affect the development of strategic capabilities and, 

consequently, the growth of the system. 

Obviously, the mere topological structure evolution cannot be used as a full justification 

for the destination growth. More data and information on the other several possible 

determinants should be thoroughly investigated. This is, however, outside the objectives of 

this work.  
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7.5 Network thinking: implications for management and governance 

The exploratory investigation presented in this thesis has, as already stated, a number of 

important implications in the field of tourism studies. They have been already expressed 

while discussing the outcomes of this investigation, but it may be worth (even at cost of 

some repetition) to summarise them. First of all it must be noted that the results discussed 

here have been obtained by combining a quantitative and a qualitative approach. As in 

many other disciplines, in fact, the results of numerical analyses, to be ‘useful’ and 

significant, need a solid layer of interpretation which can only be possible by turning to the 

outcomes of qualitative studies on the same subject. Conversely, qualitative investigations 

can greatly benefit from the possibility of an ‘independent’ quantitative confirmation of the 

results. This is the case, for example, of the proposal made to use specific network metrics 

for the assessment of the extent of cooperation in a destination. 

The application of network analysis to the management of both single and groups of 

organisations is not a new idea. The framework, the methods for both data collection and 

analysis and the implications in organisation theory and research have been known for a 

long time, at least among some (although not many) scholars (Tichy et al., 1979b). 

Today’s strong focus on issues such as partnership, collaboration, cooperation and the 

benefits of the tools available for the investigation of the relationships between the 

elements of a socio-economic system have been discussed several times in the area of 

general management studies. The implications, it is argued, go well beyond the simple 

study of networks. These methods are recognised to have a strong potential to inform a 

wide number of concerns such as the use of technology, the study of epidemiological 

diffusion (from diseases to marketing messages), the formation of consensual opinions and 

the impacts of these on organisational structure and performance (Parkhe et al., 2006). 

Elban network analysis considerations can help destination stakeholders in understanding 

who is involved in the network, what (if any) significant division into clusters exists or 

what new connections are worth developing. Most importantly, it can make it possible to 

decide to what extent actions aimed at increasing the density of relationships should be put 

forward and to derive the effort needed in managing and coordinating such a network. The 
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diffusion simulations performed, along with some more knowledge of the attitudes of the 

single stakeholders and the experience of past activities in this field, can provide insights 

into the outcomes obtainable. This may allow the completion of a ‘balance sheet’ in order 

to make well informed decisions. It is known, in fact, that excessive involvement or 

collaboration might not always be a desirable objective (Provan & Kenis, 2007; Provan et 

al., 2005). At Elba, this could ease the process of forming a ‘control room’, which many of 

the interviewees have called for, with the objective of coordinating shared actions for 

marketing the destination and for improving the effectiveness of the customer relations 

management practices implemented so far (see also Tallinucci & Testa, 2006: 192). An 

increase in efficiency of the overall communication process in the destination is felt 

necessary by many Elban operators, even if not much is done in this regard. Undeniably, 

optimised communication channels can greatly enhance the diffusion of knowledge, of best 

practices, of ‘good attitudes’ and can greatly help in fostering a more collaborative 

atmosphere which is one of the premises for a higher competitiveness of the whole 

destination (see section 4.2). 

Managers willing to encourage effective networking practices should be first aware of the 

structure and general dynamic behaviour of a network. The structure can be studied by 

using methods such as those presented in this thesis, and the patterns of change can be 

identified and measured as has been done by comparing the different maturity stages of 

Elba. With such environmental knowledge, it may be more comfortable to evaluate the 

stakeholder’s role in the network and to assess the congruence between strategic goals and 

possible evolutionary scenarios. The acknowledgement of the path of the system’s 

evolution and its implications may put a manager in a better position to take full advantage 

of the opportunities while avoiding the threats related to the configuration (Koka et al., 

2006).  

Rather obviously, a great part of the effectiveness of a networked system is due to the 

actions of individual actors, and single stakeholders may benefit from network 

involvement apart from the form of governance. However (see also the discussion in 

Chapter 4), collective outcomes, effectiveness and behaviours are significantly influenced 

by governance forms based on a systemic approach (Berry et al., 2004; Farrell & Twining-
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Ward, 2004; Lazzeretti & Petrillo, 2006). And this is more valid when considering an 

inherently networked system such as a tourism destination (Aas et al., 2005; Agostinho & 

Teixeira de Castro, 2003; Bickerdyke, 1996; Capone, 2004; Carlsen, 1999; Pechlaner et al., 

2002; Walker et al., 1998). 

From a policy perspective, “when governments, communities, foundations, or regional 

industry groups think about how they can improve their economy, disaster preparedness, 

competitiveness, health and well-being of citizens, and so on, collaboration through an 

interorganizational network is an approach that is increasingly utilized” (Provan et al., 

2007: 512). The governance style of a network system can have significant implications for 

its overall effectiveness. A valuable management requires the capability to appreciate and 

react to both internal and external demands, mainly when dealing with the tensions that 

may arise (Provan & Kenis, 2007). In this respect, the methods of network science can 

prove highly beneficial in deepening the knowledge of the whole system and, coupled with 

more traditional procedures, can provide powerful tools to enable those adaptive 

management practices considered by many the only practical way to steer the collective 

efforts of multiple organisations (Bankes, 2002; Farrell & Twining-Ward, 2004; Holling, 

1978; Ritter & Gemünden, 2003; Ritter et al., 2004). The possibility to analyse in a 

quantitative way the relationships between tourism operators opens new paths for the 

researcher interested in the structure, the evolution, the outcomes, the effectiveness and the 

governance of the system. More than that, these methods and the emphasis on the whole 

network rather than only on the particular relations that any organisation might have, offer 

effective tools to practitioners, both at a single operator and whole destination level, to 

strengthen their capacity of intervention. Most interviewees have agreed on this 

perspective, recognising the need for stronger guidance for the destination which, however, 

should take into due account the ‘autonomous’ attitude of the majority of Elban tourism 

operators in conducting their businesses. 

7.6 An answer to the research questions 

The main research question posed at the beginning of this thesis was: How do tourism 

destination networks evolve over time?  
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This question has been articulated in a number of subquestions which have formed the 

main guideline for the research work presented in this thesis. The results and their 

discussion in Chapters 6 and 7 give an answer to these questions. This section is a 

summary of the answers found. 

RQ1: What is the structure of the tourism destination network? and RQ6: How do the real 

and technological networks compare in a tourism destination? 

The investigation of the island of Elba has shown the implications of assuming that a 

complex system can be represented by a network. The topology has been found in general 

agreement with the one exhibited by many other complex networks. The differences found, 

mainly in the density and clustering, have been related to the sociological characteristics of 

the destination. The metrics (clustering and assortativity coefficients) have been used as 

quantitative assessments of the degree of collaboration and cooperation among the 

stakeholders. The different modularity properties have also been discussed, showing the 

tendency of the system to self-organise beyond some basic ‘induced’ subdivision such as 

the geographical or administrative ones.  

The analysis of the network formed by the websites of the tourism operators has given 

indications about the usage of technology and warned about the possible strategic 

directions in this important field. More importantly, it has provided evidence of the 

possibility of using this technological network as a significant sample of the real network. 

This result may greatly lower the burden of data collection and favour an increase in the 

number of network studies of tourism destinations. 

RQ3: How does the network structure affect dynamic processes? and RQ4: How can the 

network be optimised? 

An epidemic information diffusion mechanism has shown the different effects of the 

actor’s capabilities and of the network topology. A general qualitative agreement with 

similar works reported in the literature has been found, while the peculiar characteristics of 

the system studied can explain the differences. The results demonstrate clearly the 

importance of the distribution of links in a simulated network and principally of the 

clustering characteristics. To this extent, the rewiring procedure with its increase in the 
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efficiency of the network, has given indication of a possible modification (optimisation) 

which can greatly improve the diffusion mechanism. In the cases in which this ‘mechanical 

procedure’ can be translated into feasible modifications of the real destination network 

structure, this is undoubtedly an additional possibility offered to a destination management 

body in order to improve the flow of knowledge and information. In fact, it has been 

shown that the effects of network optimisations on the course of a diffusion process 

outperform other possible modifications such as changes in the actors’ abilities to transfer 

information. 

RQ2: How can we build a model for network evolution that reproduces the present 

structure of the network? and RQ5: How does this model explain the history of the 

destination? 

The examination of the recorded history of the Elba destination and the comparison with 

the characteristics of the stakeholders network at different times has allowed the building 

of a growth model for the network. This is a variation of the basic preferential attachment 

model which is able to reproduce the scale-free topology of today’s network. 

The variations concern the limitations of high degree nodes which, at some early stage of 

development, have only a limited knowledge of the rest of the network and, as such, 

produce the degree distribution observed. At subsequent times this knowledge is completed 

and the final configuration can be explained. The impact of the network modifications 

(growth in density and clustering) on the development of the destination have been 

highlighted. This model has been related to the widely accepted qualitative destination 

evolution model used in the field: Butler’s life cycle model. The general agreement 

demonstrates the reliability of the model proposed. 
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8 Conclusions 

The original motivation for this research was to satisfy a need to explore the structure and 

the dynamics of a tourism destination by applying the recent advances made in the area of 

network analysis. The central research question formulated in the introductory chapter 

(Chapter 1) of this thesis was: ‘How do tourism destination networks evolve over time?’ 

This main research question has been divided into a number of subquestions: 

� RQ1: What is the structure of the tourism destination network? 

� RQ2: How can we build an evolutionary model that reproduces the present structure? 

� RQ3: How does the network structure affect dynamic processes? 

� RQ4: How can the network be optimised? 

� RQ5: How does this model relate to the history of the destination? 

� RQ6: How do the real and technological networks compare in a tourism destination? 

8.1 A summary of the thesis 

Different disciplines have been called into play and the models and techniques chosen for 

this study have been discussed in Chapters 2, 3 and 4. The quantitative network approach 

used stems from the mixed tradition formed by the social network analysis methods linked 

to the very recent instruments made available by the community of mathematicians and 

physicists who have worked on the analysis of complex networks. The general framework 

of complexity and chaos theory, combined with a statistical physics approach, has proved 

very effective in providing a strong theoretical basis for these methods. More specifically, 

Chapter 2 has introduced basic notions from graph theory and presented methods to 

quantify various properties of network graphs from a static point of view. Chapter 3 has 

discussed the behaviour of evolving and growing networked systems and several dynamic 

processes which may occur on them, along with their use to simulate real world networks. 

The main ideas which come from the tradition of industrial economics studies and the most 

important aspects of a tourism destination have been described in Chapter 4.  
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The theoretical background for the research work has been finally defined as the 

combination, or better the intersection, of these three main areas: complex network theory, 

industrial economics and tourism destination studies. 

The choice and the discussion of data collection methods, network static and dynamic 

metrics and simulation algorithms which form the methodology used in this study have 

been presented in Chapter 5. The main criteria which led to the selection of the tourism 

destination used as test bench in this work, the island of Elba (Italy) have been highlighted 

in the same chapter. 

The outcomes of the investigation and the discussion of their interpretation have been 

given in Chapters 6 and 7; they have also provided the specific answers to the research 

questions. 

The Elba tourism destination network has been characterised as a complex network whose 

main traits are common to many other natural and artificial systems. Its scale-freeness has 

been assessed. Despite this similarity, the structure differs from those exhibited by other 

complex systems mainly in its degree of connectivity. Even the modularity of the whole 

network seems to be quite low. The interpretation given, based on the extent of 

collaboration among the destination stakeholders, has been cross verified with the 

outcomes of other studies (RQ1). The simulations performed have shown how and to what 

extent the topology of the network is responsible for the robustness of the system, the 

evolution of dynamic diffusion processes and the effects of network optimisation on these 

processes (RQ2 and RQ5). The comparison between the web and the real networks has 

allowed us to gather some insights into the usage of information and communication 

technologies and to assess the substantial similarity between the two topologies (RQ6). 

Finally, a model for the network’s dynamic evolution has been built and compared with the 

historical development of the destination (RQ3 and RQ4). 

8.1.1 Research limitations and boundaries 

The boundaries of this work have already been uncovered in the introduction to this thesis 

and in the Methods chapter (Chapter 5). Basically, only ‘formal’ relationships between 

tourism stakeholders have been taken into account, and they have been considered all of 
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equal importance. No attempt has been made to differentiate them and no consideration has 

been given to a different type of network that, undoubtedly, can influence the behaviour of 

a tourism system such as personal social relationships (e.g. kinship or friendship) amongst 

people working in the field. Being interested in the topological characteristics of a tourism 

destination network, and in its dynamic evolution, the functioning of the single elements 

(the network actors) has been disregarded along with the influence this may have on the 

properties studied here. The only exception was the study on the diffusion process in which 

actors were assigned different properties (capability to transfer information). 

The most important point to note, however, is that all the results presented here concern a 

single case. Although the usage of a single case study is well acknowledged in the 

sociology and economic literature, this poses a limit to the general validity of the outcomes 

of this research. Before being able to generalise some or all of the outcomes, a much more 

extensive collection of similar studies should be assembled. Nonetheless, given the basic 

methodological nature of the work presented here, this is not seen as a major limitation for 

the present thesis. 

8.2 Contributions of this thesis and further research 

Besides answering to the research questions posed at the beginning of this work, this thesis 

has made a number of significant contributions to the study of tourism destinations. 

The first, and most important contribution, is of methodological nature. The combination 

of models and techniques drawn from different disciplines has been synthesised in order to 

develop a uniform set of tools which has proved effective for the structural analysis of a 

tourism destination. As has been noted several times in the discussion contained in this 

chapter, both quantitative and qualitative instruments are necessary to fully exploit the 

potential of the methods presented here. This work, therefore, strongly supports the idea, 

already expressed by many scholars, that triangulation of research methods can give the 

clues necessary to (Davies, 2003: 110): 

lead to a ‘truer analysis’ of business behaviour and hence more purposeful investigation of 

hotels, tour operators, travel agents and the business of tourism in general.  
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In this general framework, three contributions have been made. The first one is the 

successful use of quantitative measurement for the assessment of the extent of 

collaborative and cooperative characteristics of the activities of the stakeholders in a 

tourism destination. For the scholar, this can greatly help in confirming those models 

which see this phenomenon as a crucial determinant for the balanced development of the 

system. For those interested or involved in managing a destination, the combination of 

both traditional qualitative evaluations and quantitative measurements can give more 

strength to the decisions made and better inform the actions and policies needed. 

The methods proposed here rely on a set of data collection techniques which can be 

replicated without major difficulties. However, as mentioned previously, the process is still 

long, cumbersome and complex. In this respect, demonstrating the possibility of using web 

derived data to perform the analyses is an important contribution. This means that there is 

an effective and relatively fast way to gather a significant sample useful for the analysis. 

Even considering the limitations inherent in a ‘network sampling’ scheme, this result can 

greatly enhance the capabilities to efficiently use the methods proposed here. Furthermore, 

the analysis of the technological network has proved valuable in providing an assessment 

of the use of these tools, fundamental in today’s competitive globalised market. 

As has been discussed, the numerical network representation allows a wide range of 

simulations. Even a very simplified model, such as the diffusion mechanism presented in 

this work, is able to provide insightful results. This is an important outcome. Tourism is a 

complex phenomenon and this complexity soundly characterises the socio-economic 

system denoted as a tourism destination, which is the essential unit of analysis for the 

understanding of the whole sector. Its behaviour can be well considered to be in that ideal 

phase space region between a completely ordered conduct and a completely disordered one 

which is also known as the edge of chaos. This idea has been intuitively with us for a long 

time. However, only in recent years has a group of scholars considered that a linear 

deterministic description is largely insufficient to explain the behaviour of a system whose 

components interact in so many different ways (Farrell & Twining-Ward, 2004; Faulkner 

& Russell, 1997; McKercher, 1999; Russell, 2006; Russell & Faulkner, 2004). The 

relationships among the different tourism operators can be highly nonlinear and the whole 
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ensemble can exhibit features which cannot be (or can be with enormous difficulty) 

derived by meaningful compositions of those of the single components. This is even more 

noticeable when considering dynamic behaviours. It is quite impossible to explain in 

simple terms why for some cases the system is able to resist huge external shocks (natural 

disasters, for example) when a similar system can be disrupted after an avalanche created 

by some seemingly insignificant event. It is difficult to understand why the action of some 

entrepreneur can act as a catalyst for incredible socio-economic growth in some cases, 

while in other situations similar behaviours do not have any recognisable effects. These 

motivations are those cited by the growing and important literature on the subject. 

Probably the most important result of this vision is the claimed impossibility of fully 

predicting the dynamic evolution of the system and of recognising that a successful 

management of a complex adaptive system needs to be adaptive itself. Numerical 

simulations seem to be the only real possibilities to overcome, at least partially, these 

difficulties and provide a range of solutions which will (Bankes, 2002: 7266) “allow users 

to iterate with the computer to gradually evolve policy schemas that have particular policy 

instances with desirable properties”. 

The dynamic progress of the destination has been related to the modifications of the 

network topology and proved models have been invoked to explain this evolution. Again, 

even with the limitations discussed, this result can prove extremely useful, mainly when 

combined with simulation techniques, to help understand (theoretically) the evolutionary 

mechanisms and to derive practical insights useful in informing a destination’s 

management and supervision activities.  

The limitations considered in section 8.1.1 can draw a path for possible future research. 

The established use of analogy and the general framework of statistical mechanics in 

which network theories are embedded give us a solid justification for extending the results 

obtained in diverse fields to the tourism one. However, there is little doubt that the 

compilation of a richer catalogue of cases, studied with network science methods, will help 

in assessing (or confuting) the results of this thesis and better explore the possibilities, both 

from a theoretical and a practical viewpoint, of this approach. First and foremost, the 

relations between the evolution of a destination and the time modifications of the 
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underlying network, combined with more sophisticated simulation models, can provide 

very influential and authoritative means of helping those fundamental forecasting activities 

which are at the basis of all strategic and tactical management practices of a tourism 

destination. The effects of different linkage typologies and intensities, and the presence of 

a directionality in them, can provide deeper understanding of the aggregation mechanisms 

in a destination. Finally, the relationships between a tourism destination and other similar 

networks, or those which can exist in other sectors of the economy can be examined 

through the analysis of the reciprocal connections. For example, prior research (Bouncken 

& Sungsoo, 2002; Cooper, 2006; Pechlaner et al., 2002) has shown that knowledge 

management is an important element in the management of tourism destinations and that 

the beneficial effects of effective exchanges of information can be greatly improved in 

networks with certain characteristics and with certain preferential connective paths to the 

external socio-economic environment (Dredge, 2005; Nordin, 2003; Novelli et al., 2006; 

Stamboulis & Skayannis, 2003). 

8.3 A concluding remark 

In the last few years, the techniques and methods of complex networks analysis have 

developed significantly. An increasing literature has studied a great variety of theoretical 

and empirical aspects of networks of many types. When this research work started, tourism 

systems, in spite of their recognised networked characteristics, were almost absent from 

these investigations. The present contribution is one of the first attempts at using 

quantitative network analysis models in the study of tourism destinations.  

As has been discussed, the exploratory nature of the analysis performed here and the 

restriction to a single case put an obvious limit on the generalisation of our results. 

However, this thesis has given evidence of the possibility to assess quantitatively the 

structural characteristics of a network of tourism stakeholders and to simulate its 

evolutionary path. The coupling of sound quantitative analysis methods with qualitative 

interpretations of the main characteristics of a tourism destination has proved extremely 

useful. Future and more extensive work, already under way, will reinforce the conclusions 
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of this thesis, mainly from a methodological point of view, and will confirm the 

effectiveness of the combined approach used here. 

As a final point, it is a firm conviction of the author that a more rigorous establishment of 

methodological tools such as those used in this work, can be a powerful way to help a 

transition towards a less undisciplined set of theories and models in the tourism arena, and 

that this can be greatly beneficial for the understanding of the structure and behaviour of 

this system and its components, so important in today’s social and economic setting. 
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... et, quaecumque viam dederit Fortuna, sequatur 

Publius Vergilius Maro , Aeneis X.49 
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Appendix 1: Main definitions 

This appendix contains, for the convenience of the reader, the definitions of the most 

important concepts used in this thesis along with the references to the sections in which 

these concepts are described. 

 

Case study (section 5.3) 

“An intensive study of a single unit for the purpose of understanding a larger class of 

(similar) units” (Gerring, 1994). 

Complex system (sections 2.1 and 2.2) 

A system of many parts which are coupled in a nonlinear fashion. Natural complex 

systems are described using techniques of the mathematical and physical sciences 

such as: nonlinear dynamics, statistical mechanics and network theory. Because of 

their intrinsic nonlinearity, complex systems are more than the sum of their parts 

because a linear system is subject to the principle of superposition, and hence is 

literally the sum of its parts, while a nonlinear system is not. A nonlinear connection 

means that change on one side is not proportional to change on the other. When there 

are many nonlinearities in a system (many components), behaviour can be as 

unpredictable as it is interesting. Complex systems research studies such behaviour. 

Complex adaptive system (section 2.1) 

A complex system in which the interactions among the elements are of a dynamic 

nature. They are influenced by and influence the external environment. In this type of 

system, the parts (Stacey, 1996: 10): “interact with each other according to sets of 

rules that require them to examine and respond to each other’s behaviour in order to 

improve their behaviour and thus the behaviour of the system they comprise”. 

Complex adaptive systems have the capacity to learn from experience and change. 
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Graph (section 2.3) 

A diagram consisting of a number of dots (nodes or vertices) and a number of lines 

(arcs or edges) connecting certain pairs of dots. Formally, a graph G is an ordered 

pair of disjointed sets (V, E), where V = {v1,…vn} is the set of vertices and E =

{(v1,u1),…, (vi,uj)} is the set of arcs. E is a subset of the Cartesian product V×V. In 

other words, E is a binary relation on V and its elements are pairs of elements 

belonging to V. A graph comprising n nodes is also represented by an adjacency 

matrix A: a square n × n matrix whose elements aij are null if no link exists between 

node i and node j, and have a value representing the weight of the link otherwise. 

Industrial district (section 4.1) 

A spatially contiguous group of interconnected companies, linked by commonalities 

and complementarities, involving a localised support infrastructure, with a collective 

vision for economic and social growth and based on competition and cooperation. 

Network (section 2.4) 

A complex, interconnected group of elements. Basic elements are: 

� nodes: objects of interests (e.g. people, companies, computers, brain cells etc.). 

Synonyms frequently used are: vertex, actor;  

� links: relationships between nodes (e.g. friendship, communication, information 

exchange, chemical reaction, transaction etc.). Synonyms frequently used are: 

edge, arc, tie, relation. 

Relations are the characterising feature of a network, so that different networks may 

be defined with the same elements if they share different types of relations. Network 

analysis takes into account the structure of relations among the actors and their 

‘location’ in the network, deriving behavioural consequences for both the single 

actors and the whole system. The mathematical representation of a network is a 

graph. Given the biunivocal relationships between a system, the network 
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representing it, the associated graph and its adjacency matrix, all these terms are 

considered to be equivalent and are used as synonyms in this thesis. 

Structure [of system, network etc.] (Chapter 1 and section 5.1) 

A combination of the components of the system (individual elements, the 

relationships among them) and how they are assembled (the number and the 

distribution of both elements and relationships). In this definition, structure refers 

both to the static elements and the dynamic processes that govern the system. 

System (section 2.1) 

Assembly of elements in which each one is related to some other. Any element 

which has no relationship with any other element of the system cannot be a part of 

that system. Many systems have a variable relation with the environment in which 

they are embedded and this relation affects both the composition and the behaviour 

of the whole system: they are called dynamic systems.  

Tourism destination (section 4.2) 

“A physical space in which a visitor spends at least one overnight. It includes tourism 

products such as support services and attractions, and tourism resources within one 

day's return travel time. It has physical and administrative boundaries defining its 

management, and images and perceptions defining its market competitiveness. Local 

destinations incorporate various stakeholders often including a host community, and 

can nest and network to form larger destinations” (UNWTO, 2002a). More generally 

a system composed of: 

� a large endowment of resources: natural, cultural, artistic, but also artificially 

built, such as museums, theme parks or sport complexes;  

� a network of groups of actors: economic, non economic and institutional, whose 

prevalent activity is providing tourism related services to visitors and travellers. 
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