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ABSTRACT 

The structural characteristics of a tourism destination are of crucial importance since they 
influence its dynamic behavior. Many studies have shown that destinations have apparently 
similar topologies. The question posited in this paper is to what extent does this similarity hold, 
and whether these topologies can be considered as a universal trait. This study reanalyzes 
available data to test this conjecture. In particular, several quantities representing the 
topological structures of the destination are calculated; further, we obtain size-invariant and 
scalable similarity scores. The results indicate that destinations hold structurally similar, and 
arguably universal, characteristics. This finding is important as it suggests that there are some 
very basic (and consistent) strategies destination managers can develop when designing plans 
and actions.  
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INTRODUCTION 

In the last few decades the study of tourism has produced a wealth of research that has examined 
innumerable aspects of this complex phenomenon from many points of view. One of the most 
important outcomes of these studies is the finding that a systems approach is requisite for 
effectively designing and managing a destination as efficiently and effectively as possible so to 
ensure a good social and economic evolution (Framke, 2002; Fyall & Garrod, 2019; Haugland 
et al., 2011). Indeed, recent research indicates that the interplay of the different stakeholders is 
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a core determinant for both the success of individual actors and that of the entire destination 
(Beritelli et al., 2007; Rodríguez-Díaz & Espino-Rodríguez, 2008; Stienmetz & Fesenmaier, 
2019). 

Managing a destination to ensure balanced social and economic progress is essentially a matter 
of designing and implementing a strategic path able to consider the diverse systemic challenges 
such as the dynamicity of the broad environment within which the destination is embedded, the 
tensions arising from the competition among the various internal components and those created 
by the growing visitors’ flows, and the influence of the remarkable advances and availability 
of technological tools (Buhalis, 2000; Gretzel et al., 2006; Li et al., 2017). Empirical indications 
of these effects come, for example, from the verification that the economic value generated by 
tourism is strongly dependent on the structure of supply- side and demand-side interactions and 
that some kind of ‘network orchestrator’ management style can be effective in better handling 
the economic impacts of tourism in a destination (Stienmetz & Fesenmaier, 2019).  As Holston 
maintains (2011), a proper design implies that  customers understand the ‘product’ and its value, 
articulates the basis for differentiating products and services from the competition, and helps 
and supports all management activities by establishing a structure able to offer opportunities 
for creativity, innovation and collaboration, and effective mechanisms to address possible 
problems.  In these considerations one element appears to play a central role: the relationships 
within the dynamic behavior of the system in terms of its functions and structural 
characteristics. These relationships are well known and well researched in a wide number of 
fields, and has helped to gain a better understanding of the properties of organic molecules (Le 
Couteur & Burreson, 2003), metabolic systems (Ma & Zeng, 2003), proteins (Lee et al., 2007), 
food webs (Pimm, 1982), the human brain (Batista-García-Ramó & Fernández-Verdecia, 
2018), the animal and vegetable kingdoms (Thompson, 1917) or engineered systems such as 
transports (Guimerà et al., 2005) or technological architectures (Gubbi et al., 2013). This 
research demonstrates that for all these systems the structural organization (i.e., topology) 
strongly constrains the range of dynamic behaviors and therefore the outcomes of underlying 
dynamic processes. 

The primary objective of this article is to examine the structure of tourism destinations. In 
particular, this paper reports the initial results of research focused on assessing the potential 
existence of ‘universal’ topological characteristics within tourism destinations. The starting 
point is the well-recognized vision of tourism destinations as complex adaptive systems 
(Baggio, 2008, 2020; Baggio & Sainaghi, 2011) and fits within the theoretical framework of 
network analytic methods embedded within statistical physics (Cimini et al., 2019; Kittel, 2004; 
Stauffer, 2004). The paper is organized in three sections as follows. The first section introduces 
the foundations of complexity science as it relates to the study of tourism destinations. The 
second section describes the research approach used to test our conjecture of universality 
including the data used and resulting metrics and the proposed methods employed for testing 
this conjecture. The third and final section includes extensive discussion of the outcomes of the 
analyses along with their implications, limitations and suggestions for future research. 
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BACKGROUND 

The theoretical background for this paper lies in the domain of complexity and network 
sciences. This discussion first provides an overview of complexity science within the context 
of tourism; then, we provide a brief discussion of the basic ideas and techniques of network 
science. We anticipate here that a full discussion of these two areas is outside the scope of this 
journal, but we provide a comprehensive set of references for those readers interested in 
deepening their knowledge on these subjects. 

Complex tourism systems 

Tourism is a strange and fascinating phenomenon. Strange because despite a three-quarters 
century effort of a wide number of scholars and practitioners no one has produced a satisfactory 
definition of the set of activities and organizations concerned with the movement of millions of 
people across the World (Darbellay & Stock, 2012; Laesser et al., 2020; Leiper, 1979). This 
strangeness makes the study of this domain a fascinating endeavor. Despite the vagueness, there 
are some characteristics that provide a path for understanding the phenomenon and for 
attempting some form of control.  These characteristics are extensively discussed in the domain 
of complexity science where the primary purpose is to provide an understanding of the 
pervasive components of the world we live in, namely complex systems (Lewin, 1999; Mitchell, 
2009; Phelan, 2001). 

In essence these are systems composed of a certain number of elements (not necessarily equal 
or similar), linked by dynamic and non-linear relationships, that exhibit hierarchical structures 
of subsystems and components that are endowed with natural behaviors or engineered 
functions. The behaviors of the components and subsystems causally influence one another at 
many levels, and the propagation of these causal stimuli creates chains of events that result in 
the overall behavior and function of the system in ways that often cannot be easily (or at all) 
predicted from the individual features or dynamics. These emergent behaviors may extend in 
both temporal and spatial dimensions (Vattam et al., 2011). Moreover, a typical complex system 
has a continuous exchange with the environment in which it is embedded and therefore 
influences, and is influenced by, these exchanges (Baggio, 2008; Johnson, 2009). Frequently 
cited examples of complex systems are the brain, the immune system, biological cells, 
metabolic networks, ant colonies, the Internet and the World Wide Web, economic and financial 
markets, and human social structures (Mitchell, 2009).  The relationships between the 
components of a system, the collective behaviors and the interactions with the environment, are 
the primary objects of study of complexity science. A central point is that complex systems are 
investigated as holistic entities, given the impossibility to comprehend all their manifestations 
as compositions of individual traits and behaviors. As such, complexity science is an alternative 
paradigm to reductionism, which tries to explicate systems in terms of their constituent elements 
and the individual interactions between them (Anderson, 1972). 

Looking at these considerations it is not difficult to realize that the tourism destination is a 
prototypical complex phenomenon and the understanding of the destination is of crucial 
importance to society.  Indeed, many studies have been conducted of various components of 
tourism destinations by scrutinizing many of its internal components (the stakeholders: tourists, 
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residents, companies, groups, media, associations etc.) and their relations (internal, between 
themselves and external, with the environment) using a reductionist approach. More recently, 
however, Baggio and his colleagues (Baggio, 2008, 2020; Baggio & Sainaghi, 2011) have 
begun to consider tourism destination as a dynamic and complex system.  Several techniques 
have been proposed for analyzing destination systems, all coming from the work done in this 
respect in many disciplinary domains. Example of studies include nonlinear analysis of time 
series (Olmedo & Mateos, 2015; Po & Huang, 2008), statistical physics (Cole, 2009) 
(Provenzano, 2014; Ulubaşoğlu & Hazari, 2004), agent-based modeling (Amelung et al., 2016; 
Johnson & Sieber, 2011; Pizzitutti et al., 2014).  However, it is argued that network sciences is 
the most powerful approach for investigating the structure of a destination. 

Network science in a nutshell 

Topological analysis has been widely adopted to uncover patterns or structures from various 
real-world complex systems which consist of a large number of components whose interactions 
produce nontrivial phenomena inexplicable by analyzing the individual elements. Behind a 
complex system, there is a network that defines these interactions and therefore to understand 
a complex system we map the network (and its structure) behind it. Networks embody the true 
geometry of complex systems and the extensive work done in the last decade on many 
theoretical and empirical facets has led to the finding that, despite the many differences, 
networks are governed by a series of fundamental laws which determine and limit their behavior 
(Barabási, 2007, 2012; Solé et al., 2003).  In this perspective, the common language originating 
from graph theory (Bollobás, 1998; Diestel, 2016) is used to model a system. This language is 
a rigorous framework and can be used to formalize a system of interacting entities (agents) by 
letting each entity play the role of a node and where various types of interaction can be described 
as links (weighted or unweighted, directed or undirected, multiple or single). Moreover, 
representing a network as a square matrix (adjacency matrix) whose elements specify whether 
pairs of vertices are connected or not allows for quantifying different aspects of the system. As 
such, network science provides very powerful tools with which to count, map and evaluate the 
patterns of connections between the elements of any system, be it a natural, artificial, social or 
economic.  

From an applied perspective, network analysis provides the foundation needed to design and 
manage destination management activities as they need to be grounded in a deep knowledge of 
the system’s features. The importance (and usefulness) of systems analysis is exemplified by 
studies in a range of issues including the study of topological and dynamic features of 
destinations, information and knowledge diffusion mechanisms and the behavior of 
management teams or to the patterns characterizing the flows of visitors (Baggio, 2017; 
Casanueva et al., 2016; van der Zee & Vanneste, 2015).  These studies demonstrate that a 
central issue in destination design (and management) is the concept of process which describes 
the dynamic relationships of information (or materials) and the structure of the relationships 
within the system (Capra, 1985; Gault et al., 1987; Miller, 1984), and they confirm that the 
success of any destination is based upon the fit between the products and services (the 
processes) and the organizational structure (Fujimoto, 2007; Jones, 2014; Ottino, 2004; 
Stienmetz & Fesenmaier, 2017).  

A thorough network study evaluates the system at three levels: 
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 Local (microscopic): Analyses at this level focus on the properties of the single 
components (nodes). Most relevant quantities are: number of links each node has 
(degree); clustering coefficient (density of links of the node’s immediate neighbors); the 
capability to reach any other node (closeness); the role played as connector between 
different areas of the network (betweenness); the overall influence of a node (derived 
from the principal eigenvector of the adjacency matrix). Normalized versions of these 
metrics are usually called centrality (e.g. degree centrality, betweenness centrality etc.); 
 

 Intermediate (mesoscopic): Analyses at this level examine possible sub-structures such 
as modules (or communities); that is, groups of nodes more densely connected between 
themselves than to than to other parts, or the presence of hierarchies in the topology. 
Other mesoscopic structures are motifs or graphlets, patterns of connections involving 
small subsets of nodes, whose distribution characterizes many system functions; and, 
 

 Global (macroscopic): Analyses at this level focus on large-scale topological 
characteristics where the measures include the statistical distributions of the local 
metrics and, above all, degree distribution which describes the capability of the system 
to react to a number of dynamic processes. Many real and artificial networks exhibit a 
power-law degree distribution (few nodes with many connections and many with few 
links). In this case we have no typical degree or scale (as it would be for the mean of a 
Gaussian shape), hence the scale-free name given to these networks. Other measures 
used are the average path length (average distance between any two nodes), the diameter 
(longest distance between any two nodes), the correlations existing between the 
distributions of different metrics, and the average values of the microscopic metrics over 
the whole network. 

The many metrics defined for measuring the features of a network provide rigorous quantitative 
assessments describing the dynamics of the system and therefore the potential for various 
evolutionary paths. Their precise definitions can be found in the large literature of network 
science (Barabási, 2016; Cimini et al., 2019; da Fontoura Costa et al., 2007). Importantly, this 
literature demonstrates that the topological features of complex networks strongly influence the 
underlying dynamic processes such as the diffusion of information or opinions, information 
search, cooperation among organizations, etc. (Baggio and Cooper, 2010; Baggio and Del 
Chiappa, 2014; Barrat et al., 2008; Boccaletti et al., 2006).  As such, these analyses across the 
three levels of the system enable managers to design and evaluate potential strategies by 
simulating system structure; further, these analyses make it is possible to ‘experiment’ with 
different patterns, configurations and settings or different dynamic processes that would be 
otherwise impossible for theoretical or practical reasons.  The understanding gained about the 
behavior of system can then be used to assess the potential efficacy of alternative management 
(including design) actions (Hartmann, 1996; Stauffer, 2003). 

Statistical physics and complex networks 

The theoretical framework in which network science is embedded is statistical physics (or 
statistical mechanics), one of the fundamental fields of physics. This is a rigorous formal 
framework for the study of the properties of many body systems (i.e. composed of a large 
number of interacting elements), allows for deriving statistically the macroscopic properties of 
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a system from incomplete measurements of intensive (i.e. independent from dimensions of the 
system) and extensive (i.e. size-dependent) quantities related to the system, and when system’s 
microscopic properties are expressed in terms of probability distributions (Kittel, 2004; Landau 
& Lifshitz, 1980). Our understanding of this framework has led to the development of two 
important concepts: scaling and universality (Amaral & Ottino, 2004; Kadanoff, 1990).  Scaling 
laws are the relations that connect the various critical-point features by characterizing the 
singular behavior of some system parameters and of some response functions (Stanley, 1999).  
The concept of universality, on the other hand, describes the essence of different systems and 
classifies them into distinct classes. Indeed, one of the main results of the application of network 
science is the recognition that many systems exhibit global properties independently from the 
specific form and characteristics of their components. Therefore, it can be concluded that 
certain universal laws may apply within many different types of systems, whether they are 
social, economic, natural or artificial. For example, studies show that natural ecosystems and 
their food webs, the human brain and its active areas under external stimuli, the routes between 
airports, the components of complicated software systems, are remarkably similar in their 
topological configurations (Cimini et al., 2019; da Fontoura Costa et al., 2011). And, 
importantly, this similarity is independent from structural details such as size, specific settings, 
topical areas, hierarchical organization, or past history. In this study, we seek to extend this work 
by beginning the process of examining the universality of ‘tourism destinations’ as a system. 
In particular, we seek to test whether there are universal topological characteristics that can be 
identified by identifying a ‘representative’ tourism destination structure and, possibly, the basic 
mechanisms which underlie the formation of this structure. 

 

RESEARCH APPROACH 
The tourism destination is conceptualized as a system where networks can be used to represent 
different states of the system. In this study we test whether there are universal topological 
characteristics which underlie the formation of seven different destinations. More specifically, 
we test whether all elements within the destination-based networks can be considered as 
belonging to the same equivalence class. The seven destination-based networks used in this 
study are the following: 

 AusWest: Western Australia (Raisi et al., 2020); 

 Cremona: city of Cremona, Italy (Milo, 2015); 

 Elba: island of Elba, Italy (Baggio et al., 2010b); 

 Gallura: the region of Costa Smeralda-Gallura, Sardinia, Italy (Del Chiappa & 
Presenza, 2013); 

 Goldcoast: the Gold Coast region, Australia (Scott et al., 2008); 

 Livigno: the city of Livigno, Italy (Sainaghi & Baggio, 2014); 

 Sibiu: Sibiu county, Romania (Grama & Baggio, 2014). 

The dimensions (number of nodes and links) of the seven destination-based networks are shown 
in Table 1. As can be seen, the destinations have different dimensions and span from single 
cities (Cremona, Livigno) to small and medium geographical areas (Elba, Sibiu, Gallura, 
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Halland) to larger regions (Western Australia) to entire countries (Fiji, Austria). They come 
from different countries and continents, and are of different nature (sea: Elba, Gallura, Gold 
Coast, Halland; mountain: Livigno; city: Cremona; internal country destinations: Sibiu, 
Western Australia; countries: Fiji, Austria). The dimensions of the seven destination-based 
networks vary as well in a couple of orders of magnitude. It is argued, therefore, that this set of 
seven destinations is sufficiently diverse to be considered a ‘reasonable’ sample for the purpose 
of initially testing a conjecture of ‘universality’ in structural properties among tourism 
destinations. 

Table 1 Order (number of nodes) and size (number of links) of the networks 

Name Nodes Links 
AusWest 577 995 
Cremona 90 223 
Elba 1028 1642 
Gallura 1808 2485 
Goldcoast 75 362 
Livigno 523 1389 
Sibiu 478 2222 
WebAT 2341 13598 
WebFiji 492 377 
WebHalland 535 388 
WebWAU 1515 5540 

 

In addition, we consider four destination networks based upon the web presence of the different 
destination stakeholders. The justification for using these digital views is consistent with much 
recent research indicating that they are reliable ‘representations’ of destination networks 
(Baggio, 2007; Baggio & Del Chiappa, 2016; Baggio et al., 2010b). Given this interpretation, 
the digital web networks (inherently directed) were symmetrized as a connective relationship 
between the various entities (therefore naturally bidirectional).  It is important to note here that 
given the high ‘non-normality’ of practically all the properties of a complex network, a sampled 
series of observations cannot be easily assessed using traditional statistical methods (see e.g. 
Clauset et al., 2008; Costenbader and Valente, 2003; Handcock and Gile, 2010; Kossinets, 
2006; Lee et al., 2006).  The additional ‘digital’ networks included in this study are: 

 WebAT: the tourism web space of Austria (Piazzi et al., 2012); 

 WebFiji: the tourism webspace of the Fiji Islands (Baggio et al., 2007); 

 WebHalland: tourism websites of the Halland County, Sweden (Éber et al., 2018); 

 WebWAU: the tourism webspace of Western Australia (Raisi et al., 2017). 

The data collection procedures followed standard protocols whereby the digital networks were 
collected using crawlers and checking the obtained data with sample visual inspections. Further, 
a similar approach was used for all the entities: a multiple-source scrutiny that collects all 
available public documental data on the components (companies, associations, groups, 
organizations etc.) of the different systems, and in some cases survey questionnaires 
administered to a sample of the tourism stakeholders. The nodes of the network are the core 



 
 

 
8 

 

tourism operators of the destination (i.e. accommodations, intermediaries, restaurants, travel 
agencies etc., as defined by (UNWTO, 2000).The results of this process were complemented 
by selected interviews with local knowledgeable informants for validating the data collected 
and evaluating type and reliability of the relationships identified.  For more details on the single 
cases the reader is referred to the original papers cited above. 

Despite the many measures existing that describe the different structural and dynamic 
characteristics of a network, no single one is considered to be a sufficient and reliable ‘global 
indicator’. Following and extending the measures proposed by Berlingerio et al. (2013), a 
feature vector containing 38 values was developed to characterize the most important 
topological properties of each network. All metrics used in describing the eleven tourism 
destinations are commonly applied in network science and are described below (Baggio et al., 
2010b; Barabási, 2016; da Fontoura Costa et al., 2007; Newman, 2010): 

Local metrics: 

 degree (deg): number of links for each node; 

 clustering coefficient (cc): fraction of node’s neighbors that are neighbors of each other; 

 closeness (clo): mean distance from a node to all other nodes; 

 betweenness (btw): fraction of all shortest paths in the network that contain a given 
node; 

 eigenvector centrality (eig): measure of the influence a node has (eigenvector associated 
with the largest eigenvalue of the adjacency matrix); 

 local efficiency (lef): efficiency in information transfer between a node and the rest of 
the network. 

For all local metrics the following statistics were calculated: mean (_mn), median (_md), 
standard deviation (_st), skewness (_sk), kurtosis (_ku). All local metrics were normalized 
before calculating the different statistics. 

Global metrics: 

 density (den): ratio between the actual number of links and the maximum possible; 

 diameter (dia): largest value for the shortest paths in the network; 

 average path length (pth): average shortest path length in the network; 

 assortativity (ass): correlation coefficient between the degrees of each node and those 
of its neighbors; 

 global efficiency (gef): gobal efficiency in information transfer; 

 Gini index of degrees (gin): Gini index of the degrees of the network; 

 modularity index (mdl): degree to which the network may be subdivided into clearly 
separated groups; 

 spectral gap (eigap): difference between the absolute values of the two largest 
eigenvalues of the adjacency matrix, which is closely bound to the behavior of a network 
with respect to dynamic processes such as synchronization or epidemic diffusion (Gago, 
2011; Van Mieghem, 2010). 
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RESULTS  

The first step in testing for universality among the tourism destinations was made by assessing 
the degree distributions P(k) of the eleven networks. Figure 1a shows the cumulative degree 
distributions of the respective networks. Apart from some variations due to the different sizes 
and densities of the networks it is clear that the shapes are quite similar. In particular the largest 

part of the distributions follows a power-law: P(k) k-. The exponents and standard deviations 
were estimated using the maximum likelihood estimation method described by Clauset et al. 
(2009) and are shown in Figure 1b (values are in table 2).  

 

 

Figure 1 Cumulative degree distributions (a) of the 11 networks, b) the exponents of the degree 
distributions  

 

Table 2 Exponents of the degree distributions 

Network Exponent 
AusWest 1.81±0.45 
Cremona 3.80±0.64 
Elba 2.60±0.14 
Gallura 2.40±0.07 
Goldcoast 3.34±0.57 
Livigno 2.92±0.21 
Sibiu 2.60±0.17 
WebAT 2.70±0.18 
WebFiji 2.27±0.09 
WebHalland 2.60±0.38 
WebWAU 2.53±0.19 
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The similarity of the power-law exponents is a first clue but is not sufficient to assess fully this 
similarity. One reason is that the fitting procedure tends to smooth possible deviations in the 
initial or the final region so that two completely different distributions may have similar features 
(fitted exponent). To overcome this situation a more reliable solution is that of comparing the 
probability distribution of the degrees using a different method. A simple possibility is to use 
the Kolmogorov-Smirnov (KS) test; however, the KS test is quite sensitive to the scale and size 
of the networks compared (since it performs a point-to-point comparison of the distributions) 
and two networks with different ranges of degrees may provide unreliable outcomes. A better 
method to address this issue was developed by Aliakbary et al. (2015) and Janssen et al. (2012) 
where the degree sequence (the list of al degrees) is divided into a number of intervals. Here, 
we use 8 intervals calculated by a logarithm binning of the degree sequence and is a common 
approach when dealing with these distributions (see e.g. Virkar and Clauset, 2014). For each 
interval the mean probability for a node to belong to that interval is calculated. This results in 
a feature vector that can be compared to the characteristics of another network. The comparison 
is performed using the Hellinger distance which is a proper metric (distance function), derived 
as a variation of the Bhattacharyya distance, and particularly apt when probability distributions 
are involved (Chung et al., 1989). The Hellinger distance is naturally normalized (0=no 
distance, 1=maximum distance) so the lower the value the higher the similarity between two 
distributions; note that we use the value 0.5 as a threshold to define a good or bad similarity.  
The results of this analysis are reported in Table 3. 
With an average value of 0.32±0.15 we cannot but confirm similarity exists among the 
destinations. However, the only values that differ from a low distance are those of the Goldcoast 
network. This can be explained as due to the small size that probably does not allow to have a 
“sufficient statistic” and to the fact that, looking at the data collection methods for that case, 
some of the nodes of the network are generic groups of operators rather than single entities (see 
Scott et al., 2008).   
 
 
Table 3. Hellinger distances between all pairs of feature vectors (highlighted values are those 
higher than 0.5) 

 AusWest Cremona Elba Gallura Goldcoast Livigno Sibiu WebAT WebFiji WebHalland WebWAU 
AusWest 0           
Cremona 0.398 0          
Elba 0.152 0.416 0         
Gallura 0.191 0.468 0.081 0        
Goldcoast 0.536 0.299 0.534 0.565 0       
Livigno 0.263 0.457 0.153 0.149 0.587 0      
Sibiu 0.247 0.306 0.210 0.238 0.440 0.233 0     
WebAT 0.346 0.424 0.290 0.295 0.597 0.178 0.241 0    
WebFiji 0.178 0.470 0.235 0.248 0.551 0.368 0.369 0.480 0   
WebHalland 0.162 0.478 0.100 0.080 0.587 0.205 0.279 0.341 0.187 0  
WebWAU 0.303 0.399 0.237 0.246 0.564 0.146 0.176 0.076 0.437 0.295 0 

 

Therefore, it is argued that, on average, the destinations networks exhibit very similar 
distributions.  Indeed, if we cumulate all the degrees we obtain the distribution of Figure 2 (the 
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dotted line is drawn as a reference and represents a pure power-law) whose exponent is 
=2.57±0.09, which can then be seen as a typical destination network degree distribution. 

 

 

Figure 2 The cumulated degree distribution 

 

The second step in the study examined the structural characteristics of the eleven destination 
systems in terms of the 38 network measures. The results of these analyses are in Table 4. As 
can be seen, practically all the local metrics have small values and signal relatively low general 
connectivity characteristics for the networks examined. The same applies for the efficiency 
attributes both at a local and global level. This is valid also for the mesoscopic structures that 
show little heterogeneity. The general compactness expressed by the diameter and the average 
distance (path length) between any two nodes are, instead, similar or better than those reported 
in the literature for many other social and economic networks (Barabási, 2016; Newman, 2010; 
da Fontoura et al., 2011). These outcomes are discussed in the next section. 

Table 4 Network metrics for the destinations examined 

 Network  
Metric AusWest Cremona Elba Gallura Goldcoast Livigno Sibiu WebAT WebFiji WebHalland WebWAU 
deg_mn 0.006 0.056 0.003 0.002 0.184 0.010 0.019 0.005 0.003 0.003 0.005 
deg_md 0.002 0.034 0.001 0.001 0.122 0.006 0.007 0.002 0.002 0.002 0.002 
deg_st 0.013 0.058 0.012 0.005 0.182 0.033 0.037 0.015 0.007 0.005 0.012 
deg_sk 8.896 2.008 14.414 13.407 0.761 15.645 5.356 20.094 6.335 5.458 12.086 
deg_ku 105.997 4.524 274.987 229.568 -0.660 294.662 39.133 557.536 53.380 45.140 233.273 
cc_mn 0.097 0.260 0.050 0.091 0.388 0.346 0.321 0.362 0.024 0.035 0.243 
cc_md 0.000 0.149 0.000 0.000 0.465 0.286 0.267 0.308 0.000 0.000 0.151 
cc_st 0.226 0.317 0.160 0.250 0.367 0.370 0.326 0.322 0.133 0.140 0.300 
cc_sk 2.906 1.079 4.468 2.793 0.150 0.647 0.724 0.639 6.344 5.302 1.305 
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cc_ku 8.086 0.126 21.582 6.486 -1.525 -1.024 -0.566 -0.664 40.948 30.385 0.788 
clo_mn 0.196 0.313 0.121 0.089 0.464 0.331 0.353 0.321 0.064 0.043 0.229 
clo_md 0.217 0.297 0.160 0.127 0.458 0.391 0.366 0.363 0.066 0.002 0.267 
clo_st 0.091 0.066 0.100 0.075 0.121 0.124 0.080 0.106 0.063 0.046 0.110 
clo_sk -1.201 0.246 -0.259 -0.250 -0.833 -1.842 -2.078 -2.309 0.162 0.271 -1.367 
clo_ku 0.589 -0.412 -1.712 -1.728 2.685 2.474 7.731 4.415 -1.723 -1.698 0.416 
btw_mn 0.004 0.027 0.001 0.001 0.025 0.002 0.003 0.001 0.002 0.002 0.001 
btw_md 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
btw_st 0.018 0.053 0.007 0.005 0.047 0.028 0.018 0.010 0.008 0.006 0.008 
btw_sk 14.356 3.699 22.934 18.350 2.405 22.140 11.968 35.393 8.548 5.255 26.283 
btw_ku 238.444 17.001 610.025 409.658 5.673 497.295 174.041 1359.621 96.560 35.111 834.551 
eig_mn 0.018 0.067 0.015 0.008 0.110 0.029 0.027 0.013 0.018 0.012 0.014 
eig_md 0.003 0.024 0.002 0.000 0.091 0.027 0.013 0.009 0.000 0.000 0.008 
eig_st 0.037 0.081 0.028 0.022 0.099 0.033 0.037 0.016 0.042 0.041 0.022 
eig_sk 5.224 1.444 6.469 6.766 0.442 8.793 2.924 9.356 5.714 6.233 5.790 
eig_ku 42.391 1.411 78.613 74.880 -1.307 131.335 11.537 169.737 48.825 54.339 59.600 
lef_mn 0.118 0.327 0.062 0.100 0.465 0.416 0.420 0.500 0.028 0.038 0.327 
lef_md 0.000 0.167 0.000 0.000 0.700 0.417 0.475 0.567 0.000 0.000 0.282 
lef_st 0.251 0.359 0.183 0.267 0.417 0.398 0.370 0.347 0.144 0.148 0.340 
lef_sk 2.352 0.560 3.654 2.626 -0.137 0.235 0.086 -0.264 5.852 5.080 0.592 
lef_ku 4.708 -1.155 13.639 5.372 -1.831 -1.565 -1.510 -1.255 33.869 27.278 -0.952 
den 0.006 0.056 0.003 0.002 0.184 0.010 0.019 0.005 0.003 0.003 0.005 
dia 8 8 8 14 4 6 7 8 12 14 8 
pth 3.809 3.353 3.165 4.196 2.156 2.481 2.751 2.638 4.188 5.480 3.067 
ass -0.121 0.011 -0.329 -0.285 -0.322 -0.250 -0.286 -0.149 -0.254 -0.186 -0.158 
gef 0.210 0.358 0.131 0.098 0.516 0.346 0.375 0.337 0.071 0.050 0.242 
gin 0.648 0.504 0.780 0.765 0.534 0.636 0.660 0.651 0.678 0.712 0.669 
mdl 0.549 0.527 0.410 0.729 0.227 0.427 0.372 0.431 0.741 0.740 0.508 
eigap 0.348 0.313 0.263 0.066 0.550 0.318 0.360 0.224 0.207 0.171 0.256 

 

 
A cosine distance for all possible pairs of vectors was computed to assess the degree of 
similarity (or difference) across the respective destinations for all network measures.  The 
cosine similarity measure considers the vectors maximally similar if they are parallel (cosine=1) 
and maximally dissimilar if they are orthogonal (cosine=0). Importantly, this measure 
disregards the magnitude of the vectors since the goal is to look for similarity not isomorphism; 
that is, the magnitudes can be influenced by the size, for example, of the networks that would 
somehow mask the likeness (see e.g. Rawashdeh and Ralescu, 2015; Teng et al., 2012; Wang 
et al., 2015 for examples of the application of this approach).  As shown in Table 5, few 
comparisons exceed the value of 0.5, which is considered as the critical threshold for 
considering two elements dissimilar. Thus, it is concluded that the eleven destination-based 
networks included in this study are topologically very similar. 
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Table 5 Cosine distances between all pairs of feature vectors (highlighted values are those below 0.5) 

  AusWest Cremona Elba Gallura Goldcoast Livigno Sibiu WebAT WebFiji WebHalland WebWAU 
AusWest 1           
Cremona 0.883 1          
Elba 0.998 0.871 1         
Gallura 0.995 0.864 0.995 1        
Goldcoast 0.553 0.806 0.541 0.517 1       
Livigno 0.990 0.844 0.987 0.997 0.490 1      
Sibiu 0.975 0.900 0.975 0.953 0.658 0.939 1     
WebAT 0.997 0.871 0.999 0.991 0.558 0.984 0.982 1    
WebFiji 0.893 0.774 0.881 0.888 0.345 0.891 0.820 0.861 1   
WebHalland 0.669 0.559 0.644 0.684 0.107 0.707 0.530 0.613 0.907 1  
WebWAU 0.984 0.882 0.987 0.968 0.603 0.955 0.996 0.992 0.832 0.550 1 

 

DISCUSSION 

Albert Einstein and Leopold Infeld begin ‘The evolution of Physics’ (1938), one of the best 
popular science books ever written, by likening a scientist to a detective trying to solve a murder 
mystery. Now, as ‘detectives’ in tourism, we have discovered two important clues that may 
well support the notion that tourism destinations have some universal traits.  

The first clue found is a substantial similarity in the power-law shape of the degree distribution. 
This consistency tells us that tourism destination networks are prototypical complex systems, 
therefore we expect to find good self-organization capabilities, a relatively good robustness 
with respect to perturbations that may affect the system, but also a substantial fragility if the 
main hubs (nodes with the largest degrees) are affected (see e.g. Caldarelli, 2007; Newman, 
2005). Moreover, the ‘complexity’ state means that the predictability window for the behavior 
of the system is relatively small. 

The degree distribution also allows us to infer possible mechanisms for the formation and the 
growth of a complex system. In particular, the exponent of the power-law degree distribution 
is compatible with a preferential attachment formation mechanism for the networks (Barabási 
& Albert, 1999; Barabasi et al., 1999). Also popularly known as ‘rich-get-richer’, this 
mechanism indicates that new connections in a network are formed by an entity with a 
probability proportional to the degree of the receiving node.  In other words, new elements 
joining the network or newly formed connections are made with higher probability to nodes 
that already have high degrees (Barabási & Albert, 1999; Barabási, 2016). Besides this basic 
model, similar topologies can be found in networks that do not necessarily grow in terms of 
nodes or links, but rearrange their connections using preferential attachment criteria (Lee, 2015; 
Lindquist et al., 2009). This is probably a more realistic explanation for a tourism destination 
that, generally, does not experience a highly dynamic variation in the number of its components.  

A second mechanism can also be considered that is able to generate a power-law as result of 
some optimization process. In particular, one interesting variation takes into account a local 
optimization in which the agents (nodes) seek to maximize their outcomes from exchanges with 
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their partners under incomplete, local information without full knowledge about others or about 
the global network structure (Berger et al., 2004; Pujol et al., 2004). This mechanism is 
compatible with a preferential attachment and does not imply necessarily a growth in the 
network but may arise by a number of reconfigurations of the connections. Finally, the 
departures from a pure power-law at the beginning of the distributions are, as known, given by 
a finite-size effect (the pure power-law is a model in the limit of an infinite number of nodes), 
and by limitations of the knowledge of the whole system that an actor may have (Mossa  et al., 
2002; Štefančić and Zlatić, 2005), for which a tendency to connect only a few  other nodes 
results in deviations from the preferential attachment model. 

A combination of these mechanisms seems to be well reasonable when considering the process 
of establishing relationships in a socioeconomic system such as a tourism destination.  A 
confirmation of the validity of this interpretation can be found in the tourism literature (Chim-
Miki & Batista-Canino, 2017; Merinero-Rodríguez & Pulido-Fernández, 2016) in that studies 
found that when endogenous determinants are analyzed they can be brought back to some form 
of optimization of an individual agent’s own returns, whether they are of economic or emotional 
or social nature (Czernek, 2013; von Friedrichs Grängsjö, 2003). 

Concerning the other topological metrics (the second step of our analyses), we note that the 
quite small density of links, essentially, indicates that there is very low collaboration or 
cooperation attitudes among the many groups of tourism operators. This is confirmed by the 
relatively small clustering coefficient and the negative assortativity which, differently from 
what it is usually found for a social network is negative (although very small). These quantities, 
as already speculated previously testify a certain reluctance of the components of our network 
to team up and their poor attitude towards doing so in the future. For their nature, in fact, the 
clustering coefficient can be thought of a static measurement, while the assortativity coefficient 
can be interpreted as expressing a tendency (Baggio, 2007). One more consideration is that a 
negative assortativity may limit the overall resilience of the system, that is the capability to 
adapt after a significant shock. In particular, a disassortative (negative assortativity) network is 
more susceptible when high-degree nodes are involved (Newman, 2002). 

The relatively low modularity index is a further confirmation of this scarce collaboration in a 
destination. What is even more important here is to note that in all these networks the 
communities identified are composed of a variety of operators belonging to different ‘business 
categories’ (see the references to the original studies). Despite a common view of a destination 
as composed of groups of operators with similar business activities, the self-organization 
capabilities of this complex system lead to a mesoscopic structure that goes beyond 
predetermined differentiations of the organizations. This, from a governance viewpoint 
provides relevant indications, for example, on how to optimize communication channels or 
increase productivity in collaborations (see e.g. Baggio, 2011). 

From a dynamic point of view the structured scale-free topology suggests that processes such 
as the diffusion of information and knowledge or the synchronization of opinions are favored 
with respect to some more randomly dispersed connectivity patterns (Baggio & Cooper, 2010; 
López-Pintado, 2008; Zhang et al., 2016). Same can be said of the spectral gap, whose values 
are bound to the stability of synchronization processes, which increases with lowering the value 
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of the gap (Almendral & Díaz-Guilera, 2007). Moreover, by improving some clustering or local 
cohesion capability, these processes can be made much more efficient and effective. If we see 
a destination as a network of organizations and communities which functions using the 
exchange of resources such as information or investments through the network, these 
considerations provide a valuable suggestion: that of constructing simulation models able to 
reproduce these processes and to test their characteristics with respect to modifications in the 
system’s global and local structure (see e.g. Baggio & Cooper, 2010; Baggio & Del Chiappa, 
2014; Del Chiappa & Baggio, 2015). 

Designing effective strategies or governance systems will need to better consider this point and 
resort to a good adaptive governance approach rather than a decisionist management attitude, 
which would inevitably collide with these characteristics (Baggio et al., 2010a). In this respect 
the preparation of a series of simulation tools might provide more reliable information for the 
preparation of scenarios that form the undoubtable basis for this type of activities. 

The second clue comes from the comparison of the network properties examined through the 
calculation of the cosine differences. They essentially tell us that, apart from small deviations 
due to the diverse amounts of data collected for some destinations, there are no significantly 
large differences in the feature vectors made of the measures used.  As such, it is argued that 
that these two clues confirm the validity of the conjecture that, from a topological (structural) 
point of view, there is a kind of universality in the characteristics of a tourism destination. 

In summary, the findings suggest that it is possible to sketch a ‘typical’ destination. This 
summary can be obtained by averaging the main global properties of a destination network from 
the measurements taken. The summary is reported in table 6 (mean values) along with typical 
values for social networks as reported by various literature surveys or contained in the 
KONECT collection (Barabási, 2016; Boccaletti et al., 2006; Cimini et al., 2019; da Fontoura 
Costa et al., 2011; Kunegis, 2013). 

Table 6 Global topological metrics  

Metric Mean values Typical social network 

Density 0.027 10-1-10-2 

Diameter 8.818 10 
Average path length 3.389 10 

Clustering coefficient 0.201 10-1 

Assortativity -0.212 10-1 (>0) 

Global efficiency 0.249 10-1 

Modularity index 0.515 0.6-0.8 
Spectral gap 0.280 --- 
Gini index of degrees 0.658 0.6-0.8 
Degree distribution exponent 2.57±0.09 2-3 

 

Further, it is interesting noting that modifications in the structural characteristics of a destination 
network can provide more favorable conditions for ensuring a higher level of creativity and 
innovation attitudes that so important are for their social and economic prosperity and 
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development (Gabe, 2011; Richards & Wilson, 2007). In fact, it has been shown that in a 
socioeconomic environment, certain network configurations can greatly favor these traits. It 
happens with networks that exhibit a good combination of weak ties, with high quality 
information spread, and a number of strongly connected communities that provide an internal 
efficient information exchange (Fleming et al., 2007; Podolny & Baron, 1997). And tourism 
destinations definitely need to go towards these settings (Baggio, 2014), goal that can be 
obtained by simulating possible favorable topologies and deriving hints for policies that may 
effectively produce such changes. 

CONCLUDING REMARKS, LIMITATIONS AND FUTURE RESEARCH 

Tourism is a fascinating and intriguing phenomenon. It includes so many different entities, 
activities and processes that it is practically impossible to come to a logical description, let 
alone a definition. However, it is generally agreed that the tourism destination is a fundamental 
unit and key to understanding, and therefore managing, the phenomenon. For example, research 
shows that the efficiency of the different stakeholders is an important determinant for the 
competitiveness of the destination (Assaf et al., 2017; Ivanov & Ivanova, 2016), and that 
‘healthy’ environmental conditions (e.g. efficient destination governance and functioning) 
positively affect the performance of the stakeholders (Lado-Sestayo & Fernández-Castro, 2019; 
Molina-Azorin et al., 2010).  Additionally, a thorough knowledge of the structural and dynamic 
characteristics of the destination are essential to the governance of the destination itself as well 
as its strategies, policies or activities (products and services).  For a complex destination system, 
the lenses of network science have proved to be quite effective in describing complex 
associations within a tourism destination and have enabled researchers to uncover details that 
would not have been easily recognizable.  

The goal of the research reported here was to test the proposition that some topological 
properties of destinations are very consistent; that is, universal.  To achieve this goal, we 
analyzed the main features of a sample of destination-based networks where it is posited that 
even if equivalence in network structures are not complete, a substantial similarity undoubtedly 
exists thereby confirming the essential meaning of the universality hypothesis.  The results of 
this study provide substantial evidence indicating that tourism destinations operate as systems 
whose structures possess common features. Besides the theoretical interest, the existence of a 
general model can help to direct future and more detailed and focused investigations in specific 
cases and in informing the range of potential impacts of various design, planning and 
governance activities.   

The methods and the theoretical framework are rigorous and well founded, the major limitation 
to what presented here might be the relative smallness of the sample used, even if the different 
sizes, locations and typologies make this a good sample that can ensure us of the validity of the 
conjecture. One interesting addition to this line of reasoning would be to consider also how 
spatial (geometrical) configurations could influence the conjecture mainly for what concerns 
the establishment and continuation of the different relationships. 
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We further note here that the results do not ‘prove’ similarity as confirmation requires many 
more, and more detailed, studies. However, we argue that the clues described are sufficient to 
formulate our conjecture; that is, a “conclusion or a proposition which is suspected to be true 
due to preliminary supporting evidence, but for which no formal proof or disproof has yet been 
found” as Wikipedia defines it (https://en.wikipedia.org/wiki/Conjecture).  Finally, it is 
recommended that future research examine in greater detail new and more complete databases 
which may be used test the universality hypothesis, or to provide counterexamples, which may 
then lead to a better understanding of tourism destinations. Since, in the end, the advancement 
of science may come more from dissent than from unanimity, and we should try to “prove 
ourselves as wrong as quickly as possible, because only in that way can we find progress.” 
(Feynman, 1967: 158). 
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