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1 Introduction 

We are not students of some subject matter, but students of problems.  
And problems may cut right across the borders of any subject matter or discipline.  

Karl Popper (1963:88) 

 

Tourism is one of the most important economic activities in the World. The revenue generated 
has become a very important resource and a key factor in the balance of payment for many 
countries and regions and has been a major contributor to their economic growth. As a natural 
consequence, it has become, in the last decades, a discipline studied by a growing number of 
researchers, practitioners, experts and consultants. Their main objective is to describe and 
understand the composition and the dynamics of the sector and, based on this knowledge, to 
be able to foresee future behaviors of the system and its components. This is the basis for a 
great number of decisions, involving single operators as well as governing bodies at different 
levels (Hall et al., 2004). 

When choosing a method for studying a phenomenon or a subject, we inevitably make 
assumptions on the nature of the object of study. These assumptions direct the way a scholar 
formulates a research question, structures theories and models, carries out empirical work and 
interprets empirical evidence. This is also true in the study of tourism. The task of 
understanding a tourism system is not easy, tourism is difficult to measure and analyze. The 
main reason resides in the fact that it is an “industry” with no traditional production functions, 
no consistently measurable outputs and no common structure or organization across countries 
or even within the same country (see for example OECD, 2000). The World Tourism 
Organization’s definition of tourism as comprising (UNWTO, 1995): 

“the activities of persons travelling to and staying in places outside their usual 
environment for not more than one consecutive year for leisure, business and 
other purposes.” 

looks fuzzy if examined with the glasses of a scientist. Too many different elements and 
interpretations fall into the terms contained in the official definition of tourism. Tourism 
activities traverse a number of traditional economic sectors and it is a real challenge for all the 
official bodies in charge of measuring them when it comes to identifying the units to be 
accounted for. Moreover, this definition creates serious problems to all those seeking to model 
the phenomenon in order to predict its behavior.  

As much authors have discussed, tourism is a fragmented industry, geographically dispersed 
with many small specialist businesses contributing to an overall product experience. To deal 
with such an environment, a number of hierarchical organizational structures have been 
developed to provide cohesion in planning and policy and to stimulate and coordinate 
destination marketing and promotion. These structures are useful in allowing government to 
engage with organizations in the tourism sector and in providing a measure of formal 
coordination especially amongst larger operators. However, as noted by many, this approach 
has not been able to provide fully satisfactory outcomes. In a pioneering work, Faulkner and 
Valerio (1995) start from the realization of the deficiencies and the unreliability of many 
demand prediction and forecasting methods to call for the need of more appropriate ways to 
explain and understand tourism phenomena. In recent years a new approach has gained 
momentum. Many scholars believe it able to overcome the difficulties of describing complex 
systems and to give better representations and better tools to handle the issues involved.  
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This approach starts with the understanding that the reductionist hypothesis born with the 
origin of modern science is limiting too much of our ability to describe the real world. The 
methods devised by Galileo, Newton, Laplace, and many others, can only give us a very 
limited power and, more importantly, are not able to return reasonable explanations for a wide 
number of phenomena. 

In his seminal paper More is different, Phil Anderson states (1972: 393):  

“The workings of our mind and bodies, and of all the animate or inanimate 
matter of which we have any detailed knowledge, are assumed to be controlled 
by the same set of fundamental laws, which except under certain extreme 
conditions we feel we know pretty well” but “the ability to reduce everything 
to simple fundamental laws does not imply the ability to start from those laws 
and reconstruct the universe” and “at each stage entirely new laws, concepts, 
and generalizations are necessary, requiring inspiration and creativity to just as 
great a degree as in the previous one.” 

These ideas have contributed to set a new perspective in our view of natural phenomena, a 
new view which today is known as science of complexity (Waldrop, 1992). If we agree with 
this vision, then existing notions of operations and distribution channels should be revisited 
through a different articulation (Pearce, 2009).  

Although it may look far from a practical perspective, analyzing real world phenomena, 
deriving models and building theories is a crucial endeavor. Only with sound theoretical 
frameworks, in fact, it is possible to abstract from single-case events and develop a line of 
thought attitude that allows caring of similar but different situations with a guarantee (for 
what is possible) of being able to face new conditions and to make effective decisions on how 
to behave. As Farrell and Twining-Ward note (2004: 276): 

“It is frequently acknowledged that tourism study is lacking in substantial 
theory of its own […] and has failed to capitalize on progress made in other 
disciplines. Consequently, as a field of study it appears isolated and research 
and teaching appear to have grave shortcomings attributable to its 
multidisciplinary history, organization, and relations with other fields that 
should inform the study.” 

The efforts directed towards the establishment of sounder and more rigorous methodological 
approaches to tourism research continue with the objective to assemble a reasonable set of 
paradigms (in the Kuhnian sense) that may raise the status of this area of study to an accepted 
scientific discipline. This is not an easy task and has to confront the fact, well described by 
Franklin and Crang (2001) that, up to now, tourism studies have produced a wealth of 
investigations, case studies, surveys but seem to have given up on a deeper reflection on the 
possible theoretical foundations of the matter. Probably, as Franklin and Crang argue, the 
reason may be traced to the excessive dominance exercised by policy-led and industry 
sponsored works that strongly push towards a restricted focus on their priorities and 
perspectives.  

Social and economic settings such as a region, a district or a tourism destination are 
archetypical complex systems. This means, essentially, that in examining these systems we 
expect to find a number of different components (the stakeholders), of different size and 
functions, connected between them in many possible ways which are typically dynamic and 
of nonlinear nature. The overall result is a system whose behavior is almost unpredictable and 
unmanageable (at least in traditional terms). It can show properties which cannot be derived 
by simply composing the behaviors and the features of its components. In some cases it is 
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able to resist huge external shocks (e.g. natural disasters, or financial crises) without altering 
too much its conditions, in some cases another similar system can be completely disrupted by 
the consequences of some apparently insignificant event. Some stakeholder can be catalyst for 
incredible socio-economic growths, while in other situations similar behaviors do not have 
any recognizable effects (Baggio, 2008b; Bar-Yam, 1997). 

If the perspective must be changed, also the tools used to analyze or predict and to control1 
structure and behaviors of the system must be different from what used to be. As it is 
conceivable, analytic methods (i.e. the formulation and analytical solution of mathematical 
equations that describe a system and its evolution)  are quite ineffective. Methods and 
techniques need to rely on model building and numerical simulations (such as Montecarlo 
methods, agent-based models, or numerical solutions of equations etc.). In this way, by testing 
the system’s reactions to different values for the model’s parameters, it is possible to build 
evolutionary scenarios to be studied in order to derive effective ways to govern the system 
(see for example section 5.2, and Bankes, 2002). 

Among the many different possible modeling methodologies, one has become, in the last 
years, very popular and has shown its power and trustworthiness. Based on the idea that the 
most relevant characteristics of a system are its components and the relationships between 
them, a large number of scientists, have devised a set of tools, methods and theories able to 
analyze and model a networked system, so that a new discipline is now active: network 
science (Watts, 2004). The main theoretical framework in which these investigations are 
embedded is the set of theories known as statistical physics (or statistical mechanics). This is 
one of the fundamental fields of physics, and uses statistical methods for addressing physical 
systems composed of many elements. A wide variety of issues, with an intrinsic stochastic 
nature, are treated with these methods. It provides a framework for relating the microscopic 
properties of individual atoms and molecules to the macroscopic properties of materials 
observed in everyday life. Thermodynamics, and thermodynamic properties, for example, can 
be explained as a natural result of these methods. 

The main result, and power, of this approach is in the recognition that many systems exhibit 
universal properties that are independent of the specific form (topology) of their constituents. 
This may suggest the hypothesis that certain universal laws may show up in many types of 
complex systems, whether they be social, economic or biological (Amaral & Ottino, 2004). In 
other words, these assumptions give us the basis to justify an approach by analogy. When a 
similarity between different phenomena may be established, it can be assumed that there 
exists some common underlying principle. This may be especially true where such a 
similarity exists between the functions of elements in different systems or between their 
structures. If structural relations can be reproduced in a simple form in a known environment, 
a mathematical model can be assembled and its results extended to similar (unknown) systems 
(Daniel, 1955; Gentner, 1983; Wigner, 1960). 

Using the laws and methods of physics applied to social systems can be questioned, and 
indeed it has been. However, it must be considered here that in studying a socio-economic 
system as such, we are mainly interested in its global behavior and in the possibility of 
making predictions at this level rather than guessing the conduct of every single element 
(individual actors). The objective is to understand how regularities may emerge (when they 
do) out of the apparently erratic behavior of single individuals (Majorana, 1942). Therefore, 

                                                 
1 control, in the “engineering” sense, means the capability of modifying the inputs given to a system in order to 
achieve a specific behavior or to drive the system along a specific path. The objective of a control theory is to 
calculate solutions for the proper corrective action of a controller that may result in system stability 
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as it happens when using traditional statistical methods, we can disregard single individuals 
and concentrate on the aggregate properties of the whole ensemble.  

Objective of this contribution is to better discuss these considerations and to provide a 
description of the main, state of the art, methods used to critically study complex tourism 
systems with a focus on those belonging to network science. 

1.1 A	digression	on	tourism	destinations	

Tourism destinations are the main object of study here. A tourism destination is commonly 
thought to be an essential unit of analysis for the understanding of the whole tourism system 
(Buhalis, 2000; Framke, 2002; Georgulas, 1970; Ritchie & Crouch, 2003; Vanhove, 2005). 
Essentially, a destination is (UNWTO, 2002):  

“a physical space in which a visitor spends at least one overnight. It includes 
tourism products such as support services, attractions and tourism resources 
within one day's return travel time. A destination has physical and 
administrative boundaries defining its management, and images and 
perceptions defining its market competitiveness. Local destinations incorporate 
various stakeholders often including a host community, and can nest and 
network to form larger destinations”  

From a more general point of view, this constellation of specialized companies, organizations 
and communities gathered into a confined geographical location (even if its boundaries are 
often poorly defined) can be seen as a form of industrial cluster or district. Thus, habitually, 
the analysis of a destination’s structure draws upon the theory of industrial clusters, including 
their mechanisms of formation and evolution (Hjalager, 2000). The main models of clusters 
and networks of companies or organizations have been developed by investigating the 
manufacturing sector, with limited attention to service sectors of the economy such as 
tourism. Tourism destinations, however, differ from a traditional cluster in a number of 
aspects. For example, they differ in how they are formed, their focus on the service 
component, the characteristics of tourism products and their relationships, and the tourism 
production system itself. Firstly, tourism is essentially a service industry in which the product 
is not well defined and is composed of many different elements (Sinclair & Stabler, 1997; 
Wahab & Cooper, 2001). The tourist usually purchases it in advance and consumes it at the 
destination. The diversity of elements which form the product requires a range of providers 
that are an integral component of the same industry (Gollub et al., 2003). Therefore, the 
traditional models of industrial networks and clusters need modifications and adaptations 
when tourism is the main object of study (Gnoth, 2002, 2006). 

Concentration effects in general economic or industrial activities have been studied and 
measured in detail. Theoretical and empirical research has found that agglomeration effects 
generally play a crucial role in determining regional income levels (Brenner & Weigelt, 2001; 
Krugman, 1991), in attracting foreign investment (Barrell & Pain, 1999) and for the 
competitiveness of the area in which they occur (Norton, 1992). Moreover, economic growth 
and geographic agglomeration have been found to be self-reinforcing (Martin & Ottaviano, 
2001). Concentration of industries increases with economic growth, and in turn further 
enhances growth by reducing the cost of innovation in the region where the economic 
activities converge. 

Models of clusters are based on the premise that firms located in a geographical area share 
common values, rules and language such that the social environment they form is 
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homogeneous. Social, cultural and operational contiguity favors the spread of tacit 
information and knowledge among local actors. This constitutes a competitive advantage for 
the participants in the cluster because this tacit nature of the knowledge makes the 
information difficult to access by elements outside the community (Morrison, 2004). Co-
location within a concentrated geographical area is a basis for the development of other 
characteristics of a cluster. For example, an important factor for a functioning cluster is the 
formation of close ties or alliances among the different actors and the establishment of co-
operation in order to improve the competitiveness of the group beyond the incidental (usually 
external) effects that promote the gathering (Andersson et al., 2004; Mishan, 1971).  

At first approximation, a tourism destination is an example of such a collaborative cluster. 
Mutually dependent attractions, services, transportation and environmental/cultural resources 
emphasize the need for collaboration, driven mainly by customer demand. As Gunn states 
(1997: 108): “A traveler is more likely to seek the great diversity and volume of services 
when they are located together and businesses in such clusters benefit from local as well as 
travel trade”. Destination clusters generally arise spontaneously and evolve and change over 
time, driven by both internal and external factors. They are not isolated entities, but open 
systems with complex linkages to a number of other (similar or diverse) systems. The 
development of new products and services is very often done in cooperation with other 
ensembles, and the interface between different agglomerations allows the creation of new 
value (Nordin, 2003). 

The terms cluster and district are often used almost interchangeably; however, there are 
fundamental differences between the two concepts as can be seen in the work of two 
influential scholars in this field. Industrial clusters are “geographic concentrations of 
interconnected companies and institutions in a particular field” (Porter, 1998: 78). The basic 
characterizing feature is the belonging to a specific sector; with the participating firms 
connected by horizontal or vertical relationships and concentrated within a specific area. 
Some external entities such as public institutions may complement them, but the focus 
remains the entrepreneurial and business dimension. On the other hand, the Italian school of 
research interprets a district more widely, as an extension of this specialized spatial 
concentration. Becattini (1990) adds to the focus on industries a full recognition of the 
importance of the social environment of the area in which the district works. He includes 
regional governments and trade associations and, perhaps more importantly in this age of 
globalization, the understanding of the role of the linkages with the external world. This 
broader approach seems to be much closer to the reality of these agglomerations and is much 
more suitable as a framework for the study of a tourism destination. However, even taking 
this broader approach the district model needs to be adapted in order to be used as a 
framework in the tourism field. As discussed above, the tourism product is primarily a service 
product, with the qualities of intangibility, inseparability, heterogeneity and perishability and 
therefore different from industrial goods (Vanhove, 2005). In addition, both time and space 
separate the purchase and the consumption of a tourism product, so that potential visitors are 
not able to fully assess product attributes prior to consumption (Burns, 1999; Cooper et al., 
2005; Mill & Morrison, 1992). 

A tourism destination, when interpreted as a district, is composed of two main classes of 
interacting components (Antonioli Corigliano, 2000; Capone, 2004; Lazzeretti & Petrillo, 
2006; Stamboulis & Skayannis, 2003): a large endowment of resources: natural, cultural, 
artistic, but also artificially built resources such as museums, theme parks or sport complexes, 
and a group of actors: economic, non-economic and institutional, whose prevalent activity is 
providing tourism-related services to visitors and travelers (see also Flagestad & Hope, 2001). 
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In a Porterian cluster, the stakeholders of a destination district include only those whose core 
activity is tourism. However in the tradition of the Becattinian School, the stakeholders would 
also include the local social system, the various institutional entities (such as local, regional 
and national government, associations and the community) and other organizations whose 
activity, although not directly of a touristic nature, is deemed essential for the successful 
sustainable functioning of the system as a tourism destination. In this approach, and in the age 
of the Internet, the geographical delimitation of the destination can be relaxed somewhat since 
virtual groupings with entities external to the specific area might be established, thus 
overcoming the need for a strict physical proximity. 

A tourism destination is not a static system but evolves over time passing through different 
evolutionary phases. The analysis of the development of tourism destinations is an important 
theme in tourism studies. The literature on this subject is built, traditionally, around the idea 
of a tourism area life cycle (TALC) originally proposed by Butler (1980). This model is 
created by applying theories of the evolution of product life cycles to the development cycle 
of a tourism destination. These theories date from the 1960s (Bass, 1969; Rogers, 1962) and 
were well established in consumer marketing studies by the time Butler adapted the 
framework. A new product is launched, achieves acceptance and growth until competitors 
gain market share (Gardner, 1987); then, innovation or repositioning is necessary to withstand 
a decline in sales and profits. Butler applies these principles to dynamic, market-driven 
tourism development and suggests that successful destinations pass through a sequence of 
growth stages: i) exploration; ii) involvement; iii) development; iv) consolidation, and then 
stagnation followed by either a decline or rejuvenation. These stages follow an s-shaped 
logistic curve similar to the one used to describe the general evolution of an industrial district.  

The TALC model is effective as a general conceptual model of the behavior of tourism 
districts (Agarwal, 1994; Baum, 1998; Cooper & Jackson, 1989) although it has been subject 
to a number of criticisms (Butler, 2005a, 2005b). It must be noted here, in fact, that the 
excessive simplifications needed to formulate this model make it a little trivial and not really 
able to capture all the different possibilities and the rich interactions that such systems exhibit. 
As a consequence, many real behaviors and outcomes can be hardly represented, unless in 
cases where the evolution is relatively linear and stable over the observational timeframe and 
no major disruptions occur, whether internal or external to the system. 
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2 Complexity and complex systems 

It might be useful, for better understanding the complex system approach, to examine briefly 
the historical development of the ideas at its basis. 

2.1 The	“standard”	approach	to	research	

Western civilization has set up and refined, in the course of its history, a more or less standard 
way for scientifically studying a phenomenon, tackling an issue or solving problem. This 
standard way, however, is modified in many cases by individual convictions and viewpoints 
that, even if seldom defined fully or coherently, may have wide effects. Personal 
philosophical and epistemological beliefs have always played a crucial role in the history of 
science, and in many cases have deeply influenced the development of ideas and knowledge. 

The general approach consists of a series of steps: i) examine the object of study and define an 
objective; ii) decide whether our knowledge and techniques are sufficient to address it; iii) 
explore what and how others have produced in similar circumstances; iv) collect some 
empirical evidence; v) derive the appropriate conclusions; and, finally, vi) sketch some action 
that should lead to meet the aims of the work conducted. In doing that, researchers use a vast 
array of specific techniques, epistemological positions and philosophical beliefs (Losee, 
2001).  

In this multifaceted scenario, however, one element seems to be well grounded and accepted. 
When facing a big problem, a large system or a complicated phenomenon, the best method is 
to split it into smaller parts that can be managed more easily. Once obtained the partial results, 
we can recompose them to find the general solution. This notion is known as reductionism. It 
can be summarized with the words of the man who formalized the idea: René Descartes. In 
the Discourse on Method (1637: part II) he states that it is necessary  

“to divide each of the difficulties under examination into as many parts as 
possible, and as might be necessary for its adequate solution,” 

and in the Regulae ad directionem ingenii (rules for the direction of the mind), he says quite 
clearly (1701: rule V):  

“Method consists entirely in the order and disposition of the objects towards 
which our mental vision must be directed if we would find out any truth. We 
shall comply with it exactly if we reduce involved and obscure propositions 
step by step to those that are simpler, and then starting with the intuitive 
apprehension of all those that are absolutely simple, attempt to ascend to the 
knowledge of all others by precisely similar steps.” 

and (1701: rule XIII) 

“If we are to understand a problem perfectly, we must free it from any 
superfluous conceptions, reduce it to its simplest terms, and by process of 
enumeration, split it up into its smallest possible parts.” 

Reductionism is rooted into ideas that evolved from the pre-Socratic attempts to find the 
universal principles that would explain nature and the quest for the ultimate constituents of 
matter. The whole western tradition then elaborated on these concepts that were admirably 
distilled in the 16th and 17th century. Copernicus, Galileo, Descartes, Bacon, Kepler came to a 
rigorous formulation of the methodology needed to give an accurate meaning to science. This 
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work was refined very fruitfully by Isaac Newton in his Philosophiae Naturalis Principia 
Mathematica (1687). The book was so successful and so widely distributed that scholars of 
any discipline started to apply the same ideas to their own field of enquiry, especially in those 
areas that did not have a strong empirical tradition such as the study of human societies and 
activities.  

The reasons for the wide influence were the simplicity, coherence and apparent completeness 
of the Newtonian proposal coupled with its agreement with intuition and common-sense. In 
the following decades many researchers tried to extend this perspective also to other 
environments. Scholars such as Thomas Hobbes, David Hume, Adolphe Quetelet, Auguste 
Comte (to cite only a few), worked with the objective explaining aggregate human behavior 
by using analogies from the world of physics, and employing its laws. Vilfredo Pareto and 
Adam Smith adopted the mechanical paradigm to the field of economics2; the idea of having 
universal laws, or relying on mathematical analytic expressions and even terms such as 
equilibrium or the formulation of gravity models are directly derived from the Principia. 

The universality of Newton’s laws, however, was to be challenged quite soon, when people 
started realizing that going beyond simple individual objects introduced a number of 
supplementary variables, typically due to mutual interactions, so that a solution could not be 
easily obtained unless by disregarding higher order terms in the mathematical formulation and 
limiting the description to a simplified and linearized description. For example, the 
gravitational theory was quite accurate in dealing with simple systems, but failed when 
applied to more complicate assemblies. The motion of planets in the solar system was 
described rather well, in first approximation, but the strange perturbations of Mercury’s orbit 
could not find a place in the model. Going deeper into the theory it was shown that, actually, 
when increasing the number of bodies to be considered, the motion of the system’s elements 
was almost unpredictable. Poincaré (1883) finally realized that even a small three-body 
system can produce such complicated outcomes that the equations describing it become 
extremely complex and practically unsolvable. The stability conditions for equilibrium in the 
motion of a system were later studied and characterized by Lyapunov (1892). This work 
provided the first evidence of the fact that, in some cases, even minor changes in initial 
conditions of relatively simple systems, described by deterministic relationships, would result 
in widely differing trajectories. It is what is called dynamical instability or sensitivity to initial 
conditions, that today we identify with chaos. 

The problem of dealing with a system composed of a large number of elements gained much 
attention in the first half of 19th century. The practical issue of increasing the efficiency of the 
newly developed steam engines led a number of scientists to leave the path drawn by Newton 
and to approach the issue from a different point of view. The problem is to study the behavior 
of a gas in which a very large number of particles interact (just to give an idea, one liter of air 
contains about 3•1022 molecules). Explicitly writing so numerous equations and solving the 
system was absolutely impossible. Statistical techniques were therefore thought to be the only 
possible tool. Nicolas Sadi Carnot, James Joule, Rudolf Clausius, William Thomson (Lord 
Kelvin) created a new discipline, thermodynamics, based on these ideas.  

Their results were quite successful and, elaborating on them, James Clerk Maxwell, Ludwig 
Boltzmann and Josiah Willard Gibbs, at the end of 19th century, systematized the matter into 
what is known today as statistical mechanics (or statistical physics). The central idea is that 
the knowledge of an incomplete set of measurements of some system’s properties can be used 

                                                 
2 after having introduced and agreed to an "utilitaristic" view of the social world, which assumes that the value of 
use of any good can be fully reflected by its uni-dimensional value of exchange (price). 
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to find the probability distributions for other properties of the system. For example, knowing 
the number of molecules of a gas in a certain volume and its temperature, at thermal 
equilibrium (i.e. when no spatial or temporal variations in temperature exist), it is possible to 
calculate the pressure, the specific heath or other quantities.  

Statistical physics is a very rigorous formal framework for the study of the properties of 
many-body systems (i.e. composed of a large number of interacting particles), where 
macroscopic properties are derived statistically from extensive and intensive3 quantities 
related to the system, and its microscopic properties can be described in terms of probability 
distributions. Furthermore, it is possible to have a better understanding of the conditions in 
which critical modifications of the system, or sudden changes of its state (phase transitions) 
occur. Our understanding of phase transitions and critical phenomena, then, has led to the 
development of two important new concepts: universality and scaling (Amaral & Ottino, 
2004).  

When studying critical phenomena, or critical conditions in the system’s evolution, a set of 
relations, called scaling laws, may be determined to help in relating the various critical-point 
features by characterizing the singular behavior of some system parameters and of response 
functions. The predictions of the scaling hypothesis are supported by a wide range of 
experimental work, and also by numerous calculations on model systems (Kadanoff, 1990; 
Stanley, 1999). 

The concept of universality in statistical physics and complex systems has the basic objective 
of capturing the essence of different systems and classifying them into distinct classes. The 
universality of critical behavior pushes the investigations on the features of the microscopic 
relationships important for determining critical-point exponents and scaling functions. 
Statistical approaches can thus be very effective in systems when the number of degrees of 
freedom (and elements described by a number of variables) is so large that an exact solution is 
not practical or possible. Even in cases where it is still possible to use analytical 
approximations, most current research utilizes the processing power of modern computers to 
simulate numerical solutions. Here too, experimental work, and numerical simulations have 
thoroughly supported the idea (Kadanoff, 1990; Stanley, 1999). 

However, the main result, and power, of this approach is in the recognition that many systems 
exhibit universal properties that are independent of the specific form of their constituents. 
This, as said, suggests the hypothesis that certain universal laws may apply to many different 
types of systems, whether they be social, economic, natural or artificial (Amaral & Ottino, 
2004). For example, natural ecosystems can be well described in terms of their food webs. 
The analysis of a wide number of such systems, examined in terms of the networks composed 
of the different species and their predation relationships, show remarkable similarities in the 
shapes (topologies) of these networks (Garlaschelli et al., 2003). This happens independently 
for apparently significant differences in factors such as size, hierarchical organization, 
specific environments, or past history. The universality and scaling hypotheses seem thus 
valid in this field and might open the way to a reconsideration of the possibility to establish 
some general treatment of the problems in environmental engineering.  

                                                 
3 in physics an intensive property of a system is a property that does not depend on the size or the amount of 
material in the system. Examples are the temperature and the hardness of an object. No matter how small a 
diamond is cut, it maintains its intrinsic hardness. By contrast, an extensive property is one that is additive for 
independent, non-interacting subsystems, thus depending e.g. on size or mass such as the amount of heat 
required to melt one ice cube. The ratio of two extensive properties, such as mass and volume, is scale-invariant, 
and this ratio, the density, is hence an intensive property. 
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In other words, these assumptions give us the basis to justify an extensive use of analogy, so 
that an inference can be drawn on the basis of a similarity in certain characteristics of 
different systems, typically their structural configuration (topology). That is to say: if a system 
or a process A is known to have certain traits, and if system or process B is known to have at 
least some of those, an inference is drawn that B also has the others. On many occasions 
mathematical models can be built and numerical simulations run in order to transfer 
information from a particular system to another particular system (Daniel, 1955; Gentner, 
1983; Gentner & Jeziorski, 1993). 

2.1.1 Widening	the	perspective:	a	systemic	view	

As seen, the Newtonian classical approach was, in many ways, extremely successful for 
scientists and problem solvers, but showed a strong limitation when taken to extremes or 
applied to unsuitable issues such as complex systems composed of many interconnected 
elements. Simplification, such as the idea of a rational homo economicus in economics, leads 
to outcomes that often misrepresent the object of study and do not allow a full explanation of 
the phenomena tending to disregard the complex network of relationships existing and their 
effects. A possible solution is to widen the perspective and consider the problem under study 
as a single entity. 

A systemic view is centered on the concept of system, seen as a configuration of elements 
joined together by a web of relationships and sensible to external forces that may modify its 
structure or behavior. In this approach we abandon the traditional idea of cause and effect, 
which is directly connected with that of predictability, and use statistical methods for creating 
possible evolutionary scenarios and assign them a probability to happen. This is, in essence, 
the idea of complex adaptive systems. 

2.2 Complex	adaptive	systems	

The natural language concept of complexity has several meanings, usually related to the size 
and the number of components in a system. There is still no universally accepted definition, 
nor a rigorous theoretical formalization, of complexity. Nonetheless, it is currently a much 
investigated research topic. Intuitively we may characterize a complex system as (Pavard & 
Dugdale, 2006: 40): 

“a system for which it is difficult, if not impossible to reduce the number of 
parameters or characterising variables without losing its essential global 
functional properties”. 

Basically, we consider a system complex if its parts interact in a non-linear manner. There are 
rarely simple cause and effect relationships between elements and a small stimulus may cause 
a large effect, or no effect at all. The non-linearity of the interactions among the system’s 
parts generates a series of specific properties that characterize the complexity of its behavior. 
A well know example in economics is the law of diminishing returns: the decrease in the 
marginal (per-unit) output of a production process as the amount of a single factor of 
production is increased, while the amounts of all other factors of production stay constant. For 
example, the use of fertilizer improves crop production on farms, but this “linear” relationship 
is valid only to a certain extent. At some point, adding more and more fertilizer improves the 
yield less per unit of fertilizer, and excessive quantities can even reduce the yield. 

It is important to highlight the difference between complicated and complex. A complicated 
system is a collection of a number, often very high, of elements whose collective behavior is 
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the cumulative sum of the individual ones. In other words, a complicated system can be 
decomposed in sub-elements and understood by analyzing each of them. On the contrary, a 
complex system can be understood only by analyzing it as a whole, almost independently by 
the number of parts composing it. 

For example, as Amaral and Ottino (2004: 147) note: 

“A Boeing 747-400 has more than 3 ×106 parts. In complicated systems, such 
as the Boeing, parts have to work in unison to accomplish a function. One key 
defect (in one of the many critical parts) brings the entire system to a halt. This 
is why redundancy is built into the design when system failure is not an option. 
More importantly, complicated systems have a limited range of responses to 
environmental changes. […] a Boeing without its crew is not able to do much 
of anything to adjust to something extraordinary.” 

On the other hand, a simple object made of only two elements, a double pendulum, a 
pendulum hanging from another pendulum, is well known to any physics student for its 
totally unpredictable, chaotic behavior (under the basic Newtonian laws of motion). A simple 
school of fishes, composed of a few dozen elements, is able to adapt its behavior to the 
external conditions without apparent organization but following a few very easy rules 
regarding local interaction, spacing and velocity (Reynolds, 1987). 

Generally, as Bar-Yam (1997) notes, a complex system is a mesoscopic structure, composed 
of a number which is not too low nor too high (but even this distinction is rather confused).  

A special class of complex systems is the one composed by those that influence and are 
influenced by the external environment and in which the interactions among the elements are 
of a dynamic nature. In a complex adaptive system, this is the term used to denote this type of 
system, the parts (Stacey, 1996: 10):  

“interact with each other according to sets of rules that require them to examine 
and respond to each other’s behaviour in order to improve their behaviour and 
thus the behaviour of the system they comprise.”  

Complexity science studies the behavior of large collections of simple interacting units and 
their capacity to evolve with time. In many cases, when the relationships that bind these units 
are nonlinear and dissipative4, complex phenomena show up from their collective dynamic 
behavior. Non-equilibrium structural reorganizations (of a spatial, temporal or spatio-temporal 
nature) spontaneously appear on a macroscopic level creating new emergent properties. This 
is referred to as self-organization, the most important visible characteristic of a complex 
system (Coveney, 2003). 

Rigorously, complex systems are difficult to define and there is little consensus on what a 
complex system is. However, scholars and practitioners in the field have a relatively clear 
idea of what symptoms characterize them. The most relevant of these are (Bar-Yam, 1997; 
Levin, 2003; Waldrop, 1992): 

 non-determinism. It is impossible to anticipate precisely the behavior of a CAS even 
knowing the functional relationships between its elements. The dependence of the 
system’s behavior from the initial conditions is extremely sensitive and appears to be 
extremely erratic; the only predictions that can be made are probabilistic;  

                                                 
4 a dissipative system is an open system that freely exchanges energy and matter with the external environment 
and is operating out of, and often far from, equilibrium. 
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 presence of feedback cycles (positive or negative). The relationships among the 
elements become more important than their own specific characteristics and the 
feedback cycles can influence the overall behavior of the system; 

 distributed nature. Many properties and functions cannot be precisely localized, in 
many cases there are redundancies and overlaps; it is a distributed system; 

 emergence and self-organization. a number of emergent properties are not directly 
accessible (identifiable or foreseeable) from an understanding of the components. In a 
CAS, global structures may emerge when certain parameters go beyond a critical 
threshold. In these cases, generally, a new hierarchical level appears that reduces the 
complexity. This is formed by groups of elements that share similar characteristics and 
behaviors, therefore the system can be modeled by considering only a reduced set of 
elements; in other terms its complexity is reduced. After a while, however, small 
differences among the elements add up (the non-linear effects of higher order) and the  
system evolves, increasing its complexity up to the next self-organization process. One 
effect of such a characteristic is the capability to show a good degree of robustness to 
external (or internal) shocks. The system is capable to absorb the shock and to remain 
in a given state or regain the state unpredictably fast (system is resilient). At the 
critical points of instability the system will reorganize through feedback mechanisms. 
However, the very same system could be disrupted by some apparently small 
perturbations that happen to spread quite fast and grow by creating an avalanche. At a 
global level the system is homogeneous or symmetric; after a self-organization 
process, however, symmetry is lost (breaks), one configuration dominates all others. 
From an empirical point of view it is virtually impossible to determinate why the 
system prefers one specific configuration instead of possible alternatives, or what type 
of perturbations may create a disruption or be absorbed; 

 self-similarity. It implies that the system considered will look like itself on a different 
scale, if magnified or made smaller in a suitable way. The self-similarity is evidence of 
a possible internal complex dynamics of a system. A CAS is at a critical state between 
a chaotic state and a completely ordered one, a condition that has been also called a 
self-organized criticality. If parameters N and z, describe a self-similar system, they 
are related by a power-law relationship: N ~ zk. A power law means that there is no 
normal or typical event, and that there is no qualitative difference between large and 
small fluctuations. 

 limited decomposability. It is quite impossible, to study the properties of a dynamic 
structure by decomposing it into functionally stable parts. Its permanent interaction 
with the environment and its properties of self-organization allow it to functionally 
restructure itself; only a “whole system” approach can explain CAS characteristics and 
behaviors. For example it is quite impossible to describe the behavior of a flock of 
birds by simply considering all the animals as independent entities and by summing up 
their movements. In fact they follow very simple rules, and although there is no 
centralized control structure dictating how individual animals should behave, local, 
and to a certain degree random, interactions between them lead to the emergence of 
intelligent global behaviour, unknown to the individual agents. 

In short, following Cilliers (1998), it is possible to characterize a system as complex and 
adaptive by listing these main properties:  

 a large number of elements form the system; 
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 interactions among the elements are nonlinear and usually have a somewhat short 
range; 

 there are loops in the interactions; 

 complex systems are usually open and their state is far from equilibrium; 

 complex systems have a history, the “future” behavior depends on the past one 

 each element is unaware of the behavior of the system as a whole, it reacts only to 
information or perturbations available to it locally. 

Examples of complex adaptive systems include many real world ensembles: the patterns of 
birds in flight or the interactions of various life forms in an ecosystem, the behavior of 
consumers in a retail environment, people and groups in a community, economic exchange 
processes, the stock-market, the weather, earthquakes, traffic jams, the immune system, river 
networks, zebra stripes, sea-shell patterns, and many others.  

2.2.1 Complex	systems	evolution	

A CAS is a dynamical system. It is, therefore, subject to some kind of evolution which may 
be characterized by two variables: an order parameter and a control parameter. The first one 
represents, in some way, the internal structure of the system, capturing its intrinsic order. The 
second one is an external variable which can be used to induce phase transitions in a system. 
For example, let us consider a certain volume of water close to the boiling point.  

The order parameter is the density difference between the liquid and vapor phases; the 
temperature the control parameter. By increasing the temperature (providing energy, heath, to 
the system) it is possible to bring the water to the boiling point. At the critical temperature Tc 
= 100 °C, the water starts boiling and the order parameter undergoes an abrupt change. It has 
the value zero in the random state (above the transition temperature) and takes on a nonzero 
value in the ordered state (below the transition). 

More generally, the variation of the order parameter can lead the system to a critical point 
(bifurcation) beyond which several stable states may exist. The state will depend on small 
random fluctuations that are amplified by positive feedback. It is impossible to determine or 
to control which state will be attained in a specific empirical system; “in practice, given the 
observable state of the system at the beginning of the process, the outcome is therefore 
unpredictable.” (Heylighen, 2003: 12). Not even the control parameter (by itself) can be used 
to predict the system dynamics. Nonetheless, it is possible to sketch a general dependency of 
global conditions of a system on a control parameter.  

Starting from a completely ordered and stable system (Figure 2.1), an increase in the control 
parameter will evolve it. The system passes through a periodic state, then to a situation 
characterized by a complex behavior, then to a completely chaotic state. This last state can be 
adequately described with Wolf (1986: 273):  

“In common usage chaos is taken to mean a state in which chance prevails. To 
the nonlinear dynamicist the word chaos has a more precise and rather different 
meaning. A chaotic system is one in which long-term [quantitative] prediction 
of the system’s state is impossible because the omnipresent uncertainty in 
determining its initial state grows exponentially fast in time.” 
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Figure 2.1 A schematic representation of the evolution of a system () dependent on a 
control parameter (). By changing  the system goes though different phases: stable, 
periodic (multi-stable), chaotic. The edge of chaos region is a configuration of adaptive 
complexity. 

 

Many of the real systems we know live at the boundary between complexity and chaos. A 
situation frequently called edge of chaos, where a system is in a condition of fragile 
equilibrium, on the threshold of collapsing into a rapidly changing state, which may set off a 
new dynamic phase (Waldrop, 1992). The type of behavior may depend on the initial state of 
the system and the values of its parameters, while the boundaries are given by the critical 
values of the parameter. In the critical regions, called attractors, the system is locally stable. 
Overcoming a critical state we find a catastrophic bifurcation, then, as the evolution 
continues, the system moves towards a new attractor, waiting for the next perturbation able to 
create a bifurcation (Figure 2.1). 

 

 
Figure 2.2 Phase space diagram for water. The different areas and the lines of transition 
between phases are shown as function of the three system’s parameters: temperature, 
volume and pressure 
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The history of a complex system is usually depicted by drawing its movement in the phase 
space. This is a geometrical n-dimensional space, in which the coordinates are the variables of 
the system. A dynamical system, at least in theory, can be described by a number of 
differential equations (equations of motion) comprising a number of variables. They are 
chosen in such a way that complete knowledge of all the variables determines the state of the 
system at one time in a unique way. The phase space is the set of all possible states of the 
system.  

A well-known example is the phase diagram for water (Figure 2.2) that shows, in a simple 
and readable way, all the possible states, and the possible transitions between them, of a water 
system as function of the control parameters: temperature, volume and pressure. For example, 
in regions far from the critical boundaries, the volume of a certain mass of water vapor is well 
predictable based on its temperature (and pressure), but in ranges very close to the phase 
transition it is almost impossible to know exactly what will happen and the relationship 
between temperature and volume changes abruptly after very small variations. 

Chaos theory essentially studies nonlinear effects on deterministic systems, while complexity 
theory studies definite patterns on non-deterministic systems. The focus of chaos theory is on 
the manner in which simple systems give rise to complicated unpredictable behaviors, while 
complexity theory focuses on how systems consisting of many elements can lead to well-
organized and (almost) predictable behaviors. As time evolves, a point representing a system 
state in the phase space describes a trajectory (or orbit). The knowledge of this orbit implies 
the solution of the equations of motion. Stable orbits (attractors) mean stable system 
behaviors. This apparent continuity in the possible evolution of a system (from an orderly 
phase to a complex behavior to a chaotic unpredictable dynamics) has led many to think of 
chaos and complexity phenomena as belonging to a unified discipline (Chris Langton quoted 
by Lewin, 1999: 12): 

“You are dealing with non-linear dynamical systems. In one case you may 
have a few things interacting, producing tremendously divergent behaviour. 
That's what you'd call deterministic chaos. It looks random, but it's not, because 
it's the result of equations you can specify, often quite simple equations. In 
another case interactions in a dynamical system give you an emergent global 
order, with a whole set of fascinating properties.” 

2.3 The	analysis	of	complex	systems	

The toolbox of the complexity scientist has today become quite crammed. Several techniques 
have been developed to deal with the task of describing a complex system. Many of them 
originate from the work of 19th century scientists, but only modern computational facilities 
have made it possible to solve them. Following Amaral and Ottino (2004), we can group these 
tools in three main classes: nonlinear dynamics, statistical physics and network theory.  

2.3.1 Nonlinear	dynamics	

A striking characteristic of complex systems is the nonlinearity of the interactions among the 
components. The main consequence is that the equations describing its behavior (provided 
they exist) can be solved only in very rare cases. The work of Poincaré cited previously is 
considered to be the starting point of a study tradition in nonlinear dynamics. 
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Since his work, a number of mathematical techniques have been developed to approximate 
the solutions of the differential equations used to describe such systems. Only the availability 
of modern powerful computers, however, made it possible to find solutions (which, in nearly 
all cases, are obtained by numerical approximations). Much of the mathematics of chaos 
theory, for example, involves the repeated iteration of simple formulas, which would be 
impractical to do otherwise.  

Nonlinear dynamic systems are capable of exhibiting self-organization and chaos. This 
mechanism is called deterministic chaos, since the equations of motion which generate such 
erratic, and apparently unpredictable behavior do not contain any random terms. Deterministic 
chaos refers to the irregular (chaotic) motion generated by a system whose evolution is 
governed by dynamic laws that uniquely determine the state of the system at all times from a 
knowledge of the system’s previous history. The source of irregularity is the exponential 
divergence of initially close trajectories in a bounded region of phase-space. This divergence 
can be measured with the aid of the theory proposed by the 19th century Russian astronomer 
Aleksandr Mikhailovich Lyapunov (Kantz & Schreiber, 1997). In this sense, chaotic behavior 
can be regarded as very complex dynamics. 

This sensitivity to initial conditions is sometimes popularly called the butterfly effect, 
suggesting the idea that chaotic weather patterns can be altered by a butterfly flapping its 
wings. A practical implication is that it is essentially impossible to formulate long term 
predictions about the behavior of a dynamic system: even if it would be possible to fix the 
initial conditions to a predetermined, finite accuracy, their errors would increase at an 
exponential rate. Examples of systems exhibiting nonlinear (chaotic) behavior are: the 
atmosphere, the solar system, plate tectonics, turbulent fluids, mixing of colored dyes, 
economies, stock markets, population growth or the “simple” double pendulum (Gleick, 1987; 
Waldrop, 1992).  

2.3.2 Statistical	physics	

Statistical physics (or statistical mechanics) is one of the fundamental fields of physics. It uses 
statistical methods for addressing physical problems. A wide variety of issues, with an 
inherently stochastic nature, is treated in such a way. It provides a framework for relating the 
microscopic properties of individual atoms and molecules to the macroscopic ones of 
materials observed in everyday life. Thermodynamics, and thermodynamic properties can be 
explained as a natural result of statistics and mechanics (classical and quantum). The main 
result, and power, of this approach is in the bypass of some classical mechanics problems, 
such as the impossibility of solving the three-body problem, by dealing with systems 
composed by a large number of elements, reasoning in terms of statistical ensembles.  

One more important outcome of the use of statistical physics methods is the use of discrete 
models. The fundamental assumption is that some phenomena can be modeled in terms of 
computer programs (algorithms) rather than in terms of analytical expressions. Cellular 
automata and their evolutions: individual based models and agent based models (ABMs) are 
an example of discrete time and space models developed for a computer utilization (see for 
example Baggio, 2011; Bonabeau, 2002; Wolfram, 2002). Other numerical simulations are 
Montecarlo methods, as well as discrete event-based systems dynamics modeling or other 
stochastic simulation methods. In many cases, then, more than one technique is used in the 
same simulation. 

Agent Based Modeling (ABM) is an essentially decentralized, individual-centric (as opposed 
to system level) approach to model design. When designing an agent based model the modeler 
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identifies the active entities, the agents (which can be people, companies, projects, assets, 
vehicles, cities, animals, ships, products, etc.), defines their behavior (main drivers, reactions, 
memory, states, ...), establishes the connections between them, puts them in a certain 
environment, and runs the simulation. The interactions between agents and between them and 
their environments are asynchronous. The actions follow discrete-event signals or a sequential 
schedule, this setup allows for the cohabitation of agents with different environmental 
settings. The global behavior then emerges as a result of these local interactions between 
many individual behaviors. Applications exist in many fields of physical, chemical, biological 
and social sciences; propagation of fire, predator-prey models diffusion of diseases or the 
evolutions of artificial organizations can be represented with ABMs (Baggio, 2011; Bertels & 
Boman, 2001; Johnson & Sieber, 2010). 

2.3.3 Network	theory	

Most complex systems can be described as networks of interacting elements. In many cases 
these interactions lead to global behaviors that are not observable at the level of the single 
elements and that share the characteristics of emergence typical of a complex system. 
Moreover, the collective properties of dynamic systems composed of a large number of 
interconnected parts are strongly influenced by the topology of the connecting network. The 
mathematical models of network structures have been developed in graph theory. A graph is a 
generalization of the geometrical concept of a set of dots (vertices, nodes), connected by links 
(edges, arcs). The main theoretical framework in which these investigations are embedded is 
the set of theories known as statistical physics (or statistical mechanics).  

The rest of this contribution is dedicated to describe the main concepts and methods of 
network analysis and to discuss their application to tourism systems. 

2.4 Tourism	destinations	as	complex	networked	systems		

The tourism sector, as an economic activity, shares many of the characteristics we have 
identified as typical of a complex system. A destination comprises many different companies 
and organizations. The relationships among them exhibit a wide diversity and have been 
described in many different ways (Michael, 2003; Pavlovich, 2003; Pavlovich & Kearins, 
2004; Smith, 1988), but, very often, they do not have any linear characteristic nor have they 
any static trait. The reaction of the different stakeholders to inputs that may come from the 
external world or from what happens inside the destination may be largely unpredictable as 
the outcomes of their conducts. Nonetheless, the system as a whole looks to follow some 
general laws (Butler’s idea of tourism area life cycle, for example). 

Even if not always explicitly defined as such, the idea that tourism is a complex adaptive 
system has been with us for a long time (see for example Leiper, 1979). Despite the lack of a 
clear and rigorous definition, a large number of researchers and practitioners has set several 
models, methods and approaches that have helped (and still do so) to understand structures 
and dynamic evolutions, and provided means to manage systems, to predict their effects or to 
optimize their functioning. Many authors have employed complexity and chaos based 
approaches to tourism starting from the realization of the complexity and instability of these 
systems (Edgar & Nisbet, 1996; McKercher, 1999). In fact “tourism is new enough, chaotic 
enough, and in the past unregulated enough to be a very attractive field” (Russell & Faulkner, 
2004: 562).  
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A number of studies have explicitly identified the principles of complexity theory. One is the 
work carried out by Russell and Faulkner. The authors suggest that (2004: 557): “the more 
pertinent features of chaotic system that are particularly relevant to the examination of 
destination development are: i) edge-of-chaos phenomena; ii) self-organizing behavior; iii) 
the butterfly effect; iv) lock-in effect; v) self-similarity and vi) bifurcation. 

Self-organization is a characteristic of tourism systems able to bottom-up create new 
structures (Baggio, 2008b), especially when a triggering event occurs. This capacity assures a 
“tremendous adaptive ability” to the system (McKercher, 1999: 428), and it is generated not 
by the system itself, but rather by its entities, as suggested by Russell and Faulkner (2004).  

The butterfly effect (Lorenz, 1963), perhaps an icon of these theories, refers to a major change 
in the system caused (triggered) by apparently small changes. The butterfly effect is related to 
the initial conditions of the system (Russell & Faulkner, 1999) and it helps to explain “how 
seemingly similar destination areas can evolve in completely different manners. It also 
explains the unpredictable nature of tourism development, where even slight changes in initial 
conditions can lead to profoundly different outcomes” (McKercher, 1999: 429).  

Tourism complex systems can show a high sensitivity to apparently unrelated events which, 
even despite their low significance, may trigger major changes. These triggering events are 
what Taleb (2007) names black swans. A black swan event: i) is a surprise (to the observer); 
ii) has a major impact on the system; iii) after the event is rationalized by hindsight, as if it 
had been expected. A recent example, affecting demand (Laws & Le Pelley, 2000) can be the 
negative publicity generated by several high profile business conventions in the United States 
in 2009. The US administration criticized companies engaging in such activities during 
periods in which profits were low and layoffs occurring. As a consequence, many firms 
cancelled their planned conventions, resulting in significant losses in some resort areas such 
as Las Vegas (Friess, 2009).  

The lock-in effect is related to the pervasiveness of some initial conditions that create a 
sustainable head-start (Russell & Faulkner, 2004), explaining “why accidents of history are 
still current today” (McKercher, 1999: 429). At a tourism destination, “the lock-in effect 
might be evident in the continuing concentration of tourist accommodation capacity and 
attractions around a location, which was originally advantaged by access to rail transport. 
With the passage of time, rail transport might have become less relevant as a means of access 
for tourists, but the original location might retain its dominance owing to agglomeration 
effects” (Russell & Faulkner, 1999: 415). 

Self-similarity is both a characteristics of the way the different elements form a system and a 
result of the functioning of the system itself. Focusing on the parts, each entity could be 
similar to others but not identical (Komulainen, 2004), focusing on the process, the chaotic 
functioning of the system tends to produce similar but not identical effects, as “the pounding 
of the ocean on the shoreline leaves a fractal coast” (Legge, 1990: 132). Tourism systems 
show self-similar characteristics in their structures and (often) in their dynamic behaviors 
(Baggio, 2008b; Russell & Faulkner, 2004) 

Finally, bifurcation is closely related to the edge of chaos. When the system overcomes a 
critical point (or region) of the phase space and enters into a new phase. Here, the values of 
the system’s parameters undergo abrupt changes (Langton, 1990), and alternatives emerge 
that tend to create Y-shaped junction bifurcations (Gleick, 1987). Here, as well, some scholars 
such as Lacitignola et al. (2010), or Russell and Faulkner (1999) or McKercher (1999) 
(although only at a qualitative level) have found evidence in tourism systems. 
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As stated, the techniques belonging to network science are probably the most promising series 
of methods that can be used to study a complex system. In the field of tourism, they provide a 
view into the network of relationships that may give tourism organization managers means to 
improve the flow of information and to target opportunities where this flow may have a 
crucial impact on regulatory or business activities.  

Moreover, research in other areas has maintained that a dynamic and open network can 
greatly influences the capabilities of a socio-economic system to express a good level of 
creativity and innovation, so important for its growth (Schilling & Phelps, 2007; Uzzi & 
Spiro, 2005). It also provides a good resilience, the capability to resist external shocks, and 
improves the reaction times towards environmental modifications making it able to adapt 
better and more quickly. This, in a period where speed has become a paradigm, is a real big 
advantage, which may make the difference for the system, but also its components, between 
surviving and becoming extinct. 
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3 Network science and tourism systems 

Although become quite popular in recent times, network analysis and its methods have a long 
tradition. Here we briefly sketch the development of the concepts and report about the main 
applications to the tourism field. This is relatively young, the first works have had the main 
objective of assessing the possibility to use the techniques and to tune a methodological path 
with the objective to provide both theoretical and practical outcomes. A few case studies have 
shown the feasibility of this approach and the interest and usefulness of the outcomes. 

3.1 Historical	development	of	the	network	concept	

An examination of the broad literature on the historical development of the network concept 
reveals a number of streams of thought. These can be divided into a mathematical-based 
stream examining the abstract characteristics and properties of ideal networks, and a social 
science stream where a network is viewed as an analogy for the interactions between 
individuals in a community. These two streams merged to some extent around the middle of 
the 20th century with the application of mathematical techniques to describe the complex 
social network patterns found in sociological studies. Most recently, findings from the study 
of complexity in physics, biology and computer sciences have been applied in the study of 
social systems. 

In mathematics a network is represented by a diagram in which the various elements are 
shown as dots and the connections among them as lines that link pairs of dots. This diagram is 
called a graph and the branch of mathematics known as graph theory constitutes the 
framework providing the formal language to describe a network and its features. The origins 
of graph theory are attributed to the Swiss mathematician Leonhard Euler (1707-1783) and to 
his paper Solutio problematis ad geometriam situs pertinentis published in (1736).  

In the paper, Euler deals with the now famous problem of the bridges of Königsberg. The 
citizens of the city used to entertain themselves by trying to work out a route crossing each of 
the cities’ seven bridges only once. All the attempts had always failed, so that many believed 
that the task was impossible (Biggs et al., 1976). Euler proved this impossibility, giving also a 
simple criterion which determines whether or not there is a solution to any similar problem 
with any number of bridges connecting any number of areas. Whilst providing the solution to 
a particular problem, the real importance of Euler’s paper is that it considers the object of 
study from an abstract point of view, giving significance to the structural characteristics rather 
than the pure geometrical ones. The title itself reflects this abstract approach and Euler’s work 
forms the cornerstone of the discipline known as topology, envisioned almost a century before 
by Leibniz: the geometria situs (Leibniz, 1693). 

In the early 20th century, the ideas and techniques developed for the study of these abstract 
objects were applied to the completely different field of sociology. Realizing that a group of 
individuals can be represented by enumerating the actors of the group and their mutual 
relationships, sociologists began to use graph theory and methods to describe and analyze 
patterns of social relations (Freeman, 2004; Wasserman & Faust, 1994). Jacob Moreno (1934) 
introduced the topic of sociometry and, by using diagrams of points and lines to represent 
relations among persons (sociograms), he aimed to identify the structure of relationships 
around individuals, groups, or organizations in order to study how these configurations may 
affect beliefs or behaviors. 
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From the sociological and anthropological point of view, networks form part of the structural 
tradition where researchers hypothesize that variations in the pattern of relationships 
surrounding social actors affect the behavior of those actors and correspondingly, that people 
also consciously manipulate situations to create desired structures (Stokowski, 1992). 
Wellman (2002: 83) writes that:  

“The concern of structural analysts with the direct study of networks of 
concrete social relations connects strongly back to post-World War II 
developments in British social anthropology. Then as now, anthropologists 
paid a good deal of attention to cultural systems of normative rights and duties 
that prescribe proper behaviour within such bounded groups as tribes, villages, 
and work units.” 

Early examples of the use of the concept a social network to examine ties between people 
include Barnes (1952) who examined a Norwegian fishing village and explained such key 
social processes as access to jobs and political activity. Soon afterward, Bott’s (1957) work 
brought the network concept to the wider attention of social scientists. She developed the first 
distinct measure of network structure, knit (now called density), to show that densely knit 
English extended families were more apt to contain married couples who did most things 
independently rather than jointly. Other sociometrists used network diagrams to represent 
interpersonal relations in small groups (e.g. Coleman, 1958) and such techniques were later 
used to study phenomena such as communication, the diffusion of innovation and the spread 
of diseases.  

A parallel development in the political science literature took a more ethnographic and 
qualitative approach. In this tradition, researchers seek to examine how patterns of ties in 
social systems allocate resources. According to Wellman (2002: 91): 

“…Structural analysts have developed ‘resource mobilization’ analyses to 
explain political behaviour. They showed such behaviour to be due to 
structured vying for resources by interest groups - and not to reflect the 
aberrant cravings of a mob. Their work emphasized how patterns of links 
between interest groups structure coalitions, cleavages, and competitive 
relations and how direct and indirect ties differentially link individuals and 
groups to resources.” 

Most recently, findings from the study of complexity in physics, biology and computer 
sciences have been applied in the study of social systems. This work has been driven by 
interest in self-organizing processes and the emergence of structure from randomness. This 
stream of literature has contributed a wide range of possible metrics for network analysis and, 
more importantly, it has provided evidence of similar connections between network 
structures, their functions and their dynamic evolution in diverse types of networks including 
those found in the social sciences (Albert & Barabási, 2002; Boccaletti et al., 2006; da 
Fontoura Costa et al., 2011).  

3.1.1 Traditions	of	network	analysis		

Within a great diversity in the study of networks, various authors have identified 
commonalities. Kilduff et al. (2006) suggest that there are four core concepts in social 
network theory: (i) the primacy of relations between organizational actors; (ii) the ubiquity of 
actors’ embeddedness in social fields; (iii) the social utility of network connections; and (iv) 
the structural patterning of social life. Wellman (2002) lists five characteristics of structural 
network analysis: 
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1. behavior is attributed to constraints on action caused by structure not due to 
internal motivations; 

2. analyses focus on the relations between units, instead of trying to sort units into 
categories defined by the inner attributes (or essences) of these units.  

3. the relationships among network members jointly affect each other’s behavior 
rather than only other members individually; 

4. structure is treated as a network of networks that may or may not be partitioned 
into discrete groups. It is not assumed a priori that tightly bounded groups are, 
intrinsically, the building blocks of the structure; 

5. the units of analysis for network studies are not individuals but the whole network. 

Built around these common or core concepts, network analysis is used in a variety of 
disciplines and subject areas. Each of these has developed its own traditions and indeed Berry 
et al. (2004) consider that in network analysis there are three traditions focused on personal 
social network analysis, policy network analysis and (inter-) organizational network analysis. 
In addition, there are a variety of uses of network concepts in situations where the objects of 
study are not socially related to people or enterprises but involve other linkages such as 
transport connections (Lew & McKercher, 2002).  

One further tradition is that based on application of complexity theory and network theory 
from the physical sciences. This considers tourism and other socio-economic systems as 
complex systems. A number of researchers have used this approach as the basis for examining 
tourism phenomena, even if their analysis, so far, has been mainly performed qualitatively 
(Farrell & Twining-Ward, 2004; Faulkner & Russell, 2001; McKercher, 1999). More 
recently, however, quantitative assessments of the characteristics of a tourism destination 
based on numerical analysis have been provided (Baggio, 2008b; Baggio et al., 2010b). Such 
studies offer, among other outcomes, the tempting possibility of describing the effect of 
proposed changes in network structures on properties such as information or knowledge 
dissemination (see for example section 5.2).  

In conclusion, it is possible to identify four different traditions in the study of social networks 
(Berry et al., 2004; Dredge, 2006). Each of these traditions makes certain assumptions, favors 
particular methods for the study of networks and seeks to answer some central question. The 
personal social network (1) and intra-organizational network (2) traditions, for example, share 
similar types of methods and emphasize quantitative studies (although using different units of 
analysis) while policy network studies (3) emphasize case study and qualitative methods. The 
physical network tradition (4) applies mathematical techniques derived from graph theory and 
statistical physics on the assumption that common laws underlie systems with similar 
topological characteristics. 

3.2 A	summary	of	the	research	so	far	in	tourism	

A handful of studies exist which have dealt mainly with tourism destinations or communities. 
The main objectives of this line of research is to apply network analytic methods in order to 
better understand the structural characteristics of a tourism destination as it comes out from 
the “spontaneous” arrangements of the relationships between the different stakeholders, 
independently from preconceived ideas typically based on traditional division by type of 
business (accommodation, intermediaries, services etc.) or geographical location, or the 
assessment of the relationships between the destination and its virtual representation in the 
Internet. Furthermore, given the important influence of the network topology on the unfolding 
of processes such as information or knowledge diffusion, or patterns of tourists’ movements, 
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the research aims at describing these processes with the objective of optimizing them by 
looking at the possibility of intervening on the organization of the destination.  The final 
objective is to provide a deeper knowledge of the evolutionary paths and the dynamical 
behavior of the systems can be studied in order to find the best governance styles for ensuring 
a sustainable growth of the systems and all their components. 

First of all the main topological characteristics of a tourism destination network have been 
measured. It has been found that a scale-free topology exists. This means that there are a few 
nodes with many connections, acting as hubs, and many nodes with a limited number of links. 
This is common to many other systems. The destinations examined have also a very low 
density of connections and low clusterization, that is not many well defined communities 
(groups of nodes with more links between them than to other nodes of the network) can be 
identified (Baggio et al., 2010b; da Fontoura Costa & Baggio, 2009; Del Chiappa & Presenza, 
2013; Luthe et al., 2012; Scott et al., 2008a; Scott et al., 2008b). This is an important result, 
because weaknesses (or differences) in the connectivity patterns of the destination can be 
independently identified (Scott et al., 2008b). There is also a significant managerial 
implication. As discussed previously, the network approach emphasize the need for a 
destination to be a collaborative environment. This can now have a natural measure in the 
metrics of the destination network (Baggio, 2007). Then, by comparing the networks of 
destinations considered to be at different development stages it has also been possible to 
correlate, at least roughly, the structural evolution of a destination (assuming a TALC–like 
model: Butler, 1980) with its evolutionary path (Baggio, 2008a; Baggio et al., 2007).  

Important or critical stakeholders in a destination have been identified. They are located in the 
core of the network and form an influential assembly controlling the governance of the 
system. When these groups show good cohesiveness (high local density of links) the whole 
system achieves better outcomes. A further confirmation for the necessity of creating 
interconnected communities for the production of integrated tourism experiences (Cooper et 
al., 2009). As expected, public stakeholders are the most important elements (Presenza & 
Cipollina, 2009). They own the critical resources (economic, environmental or 
organizational), have the highest centrality and hold the greatest legitimate authority over 
others (Timur & Getz, 2008).  

One of the advantages of a network representation is that numerical simulations can be 
performed with reasonable ease. They allow to conduct experiments when it would not 
otherwise be feasible for theoretical or practical reasons. Different configurations can be 
designed and several dynamic processes simulated. This allows to better understand how 
these configurations affect the behavior of the whole destination system. 

Information and knowledge flows are relevant determinants of the system’s wellbeing. 
Overall efficiency, innovation and development are strongly influenced by them, and the way 
in which the spread occurs shape the speed by which individual actors perform and plan their 
future (Argote & Ingram, 2000). A used way to study this problem is based on an analogy 
with the diffusion of a disease (Hethcote, 2000). Yet, differently from standard 
epidemiological models, it has been demonstrated that the structure of the network is highly 
influential in determining the basic unfolding of the process (López-Pintado, 2008). 

A series of simulations run on a real destination network shows, as expected, that the speed of 
the information diffusion process vary in accordance with the capacities of the single actors to 
acquire and share information. They also show, however, that the increase in speed is much 
higher when the modularity of the network is increased by reconfiguring the linkages (Baggio 
& Cooper, 2010). This can be a very important suggestion for possible actions. Some more 
modeling coupled with qualitative estimations of the possible returns might help building of 
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scenarios to be analyzed and discussed. The making decisions on which approach, or which 
mixture of approaches, to adopt might therefore be much better supported. 

Network analysis methods have been applied also to the virtual network of the websites 
present in a destination. The results have allowed to gauge the level of utilization of advanced 
communication technologies and measure the usage (or the waste) of important resources, 
universally considered crucial in a globalized market. Moreover, the topological similarity 
between the real and the virtual components has been assessed thus leading to the conjecture 
that the webspace of a tourism destination can be a faithful representation of its real structure 
(Baggio, 2007; Baggio & Antonioli Corigliano, 2009; Piazzi et al., 2012). More recently, the 
same techniques have been employed to show the strong structural integration of real and 
virtual elements in a destination so that the idea of a tourism digital business ecosystem can 
be better explores (Baggio & Del Chiappa, 2013) 

Other studies (Baggio et al., 2010a; García-Amado et al., 2012; Inácio et al., 2012; Leung et 
al., 2012; Luthe et al., 2012; Oliveira et al., 2013) have confirmed the essence of the outcomes 
described here reassessing the usefulness at both theoretical and practical level of network 
analytic methods to study issues concerning governance, social capital, decision-making, 
collective action or demand and supply patterns using cases from different parts of the World. 
  



 

 27

4 Elementary network theory 

A drawing in which the various elements are shown as dots and the connections among them 
as lines linking pairs of dots is representative of a network. This drawing, a mathematical 
abstraction, is called a graph 

Mathematically speaking, a network is represented by a graph G which is an ordered pair G: 
= (V,E) (Bollobás, 1998). The following conditions apply: V is a set, its elements are called 
vertices or nodes; E is a set of pairs of distinct nodes, called edges or links. The number of 
nodes n is called the order of the graph and the number of edges m is called size. The degree 
of a node is the number of edges connecting it to some other nodes. A node (also called vertex 
or actor) can represent simple objects (a word in a semantic network) or complex ones (a firm 
or a biological individual) taken as single entity. A link (also termed edge or tie) denotes some 
type of relationship between two nodes. This relationship can include a simple information 
exchange, a chemical reaction, a force or a transaction. Links can be symmetric (an 
information exchange) or directed (a flight from one airport to another) and can be assigned a 
weight w, that is a measure of strength, importance or value. The characteristics of links are 
also transferred to the whole graph. We thus speak of undirected (symmetric), directed, 
weighted graphs or combinations of these (e.g. directed weighted graph). 

 

 
Figure 4.1 Different graphs: undirected (A), weighted undirected (B), directed (C) and 
weighted directed (D) with their adjacency matrices 

 

The graph can also be represented by an nn matrix A, called an adjacency matrix. If there is 
an link from some node x to some node y, then the element ax,y has a value different from 0. 
Its value will be 1 for unweighted graphs, w for weighted graphs. If the graph is undirected, A 
is a symmetric matrix. There is a full correspondence between a graph, a network and an 
adjacency matrix; therefore the three terms are used indiscriminately. In particular the 
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identification between a graph and an adjacency matrix brings the powerful methods of linear 
algebra or used by a scientist for the investigation of network characteristics. Figure 4.1 gives 
an example of different types of networks and their adjacency matrices. 

A special type of network is the bipartite graph (or bigraph), in which nodes can be divided 
into two disjoint sets U, V such that every link connects a node U in to one in V ; that is, U 
and V are each independent sets, formally G = (U,V,E) (Figure 4.2, A). 

Bipartite networks are also called affiliation or two-mode networks and are used to represent a 
wide variety of situations such as events and people attending them, authors and papers or 
football players and clubs. In each of these the network has a link between one member of the 
first group and one of the second, but no links between members of the same group. 

 

 
Figure 4.2 A bipartite network (A) with its two one-mode projections (B) 

 

Frequently, a bipartite network has been analyzed by compressing it to a one-mode projection. 
A new network is built that contains nodes of only either of the two sets, and two U (or, 
alternatively, V) nodes are connected only if when they have at least one common 
neighboring V (or, alternatively, U) node (Figure 4.2, B). The one-mode projection, 
obviously, is always less informative than the original bipartite graph, therefore some 
appropriate method for weighting connections would be in order. Optimal weighting methods 
reflect the nature of the specific network, conform to the study objectives and aim at 
minimizing information loss. 

A better possibility is to develop appropriate methods for analyzing the bipartite network as it 
is. A good treatment in this area, along with the adaptation of the main metrics discussed in 
section 4.1 to the two-mode case can be found in the work of Guillaume and Latapy 
(Guillaume & Latapy, 2006; Latapy et al., 2008). In the rest of this work, bipartite networks 
are not ignored. The interested reader can refer to the works cited for the details. 

4.1 Network	measurements	

The inter- and multi-disciplinary origin of network science, as previously discussed, has led to 
a wide variety of quantitative measurements of its topological (structural) characteristics (see 
da Fontoura Costa et al., 2007 or Newman, 2010 for a thorough review). The literature on 
complex networks commonly uses the following measures to describe a network’s structure. 
In the following formulas: n = number of nodes (order of the network); m = number of links 
(size of the network); k = nodal degree (number of links a single node has); d = distance 
(length of shortest path connecting any two nodes); the subscript i (or j) refers to a generic 
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node. Based on the adjacency matrix (aij is an element of the matrix), m and k can be 
calculated as follows: 

i j
ijam  and 

i
iji ak . 

The main network metrics are: 
 
 density: the ratio between m and the maximum possible number of links that a graph may 

have: 
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 path: a series of consecutive links connecting any two nodes in the network, the distance 
between two vertices is the length of the shortest path connecting is them, the diameter of a 
graph is the longest distance (the maximum shortest path) existing between any two 
vertices in the graph: )max( ijdD  , the average path length in the network is the 

arithmetic mean of all the distances: 
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well-known Dijkstra's algorithm (Dijkstra, 1959), are used to calculate all the possible 
paths between any two nodes in a network.  

 closeness is the inverse of the sum of the distances from a node to all others: 
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 clustering coefficient: represents the degree of concentration of the connections of the 
node’s neighbors in a graph and gives a measure of local nonhomogeneity of the link 
density. It is calculated as the ratio between the actual number ti of links connecting the 
neighborhood (the nodes immediately connected to a chosen node) of a node and the 

maximum possible number of links in that neighborhood: 
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 beetweenness: number of shortest paths from all vertices to all others that pass through a 

node. It can be calculated as: 
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shortest paths between nodes i and j and ij(q) is the number of those paths that pass 
through q; 

 
 efficiency (at a global Eglob or local Eloc level): the capability of the networked system 

(global) or of a single node (local) to exchange information. 



ji ij

glob dnn
E

1

)1(

1
. 





ml lmii

iloc
dkk

E
',
1

)1(

1
; for the whole network its average (called local efficiency of the 

network) is: 
i

ilocloc E
n

E ,
1

; 

 eigenvector: assigns relative scores to all nodes in the network based on the idea that 
connections to high-scoring nodes contribute more to the score of the node in question than 
equal connections to low-scoring nodes. Eigenvector centrality of node q is the value of the 



 

 30

qth element of the eigenvector associated with the highest eigenvalue of the adjacency 
matrix; 

 assortative mixing coefficient: the Pearson correlation coefficient between the degree of a 
node and those of its first neighbors. If positive, the network is said to be assortative 
(otherwise disassortative). In an assortative network, well-connected elements (those with 
high degrees) tend to be linked to each other. It is calculated as:
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, where dgi is the degree of node i, dni the mean degree 

of its first neighbors; the standard error can be calculated by using the bootstrap method 
(Efron & Tibshirani, 1993). 

When non normalized by definition (clustering coefficient, for example) the individual 
metrics are usually normalized (although normalization factors vary in the literature, here 
those provided are some of the most commonly used). 

All the formulas reported above are referred to a symmetric (undirected) unweighted network. 
In many cases the extension to a directed or weighted network is trivial, it is sufficient to 
replace the aij link with its weighted value wij, or consider aij  aji. Terminology also changes 
and we speak of in-degree and out-degree, for example, to mean links connecting nodes in a 
specified direction. In other cases, however, the translation is not simple at all. The interested 
reader will find detailed descriptions in the literature cited (e.g. Newman, 2010). 

4.1.1 Fitting	a	degree	distribution	

The distribution of the degrees of the nodes of a network is an important parameter of a 
network topology. This is usually expressed as a statistical probability distribution N(k), i.e. 
for each degree present in the network, the fraction of nodes having that degree is calculated. 
The empirical distribution is then plotted and fit to find a functional (continuous) relationship. 
This is a delicate task, mainly when the degree distribution shows a long exponential tail (see 
section 4.1.3), and (all or in part) seems to follow a power-law: N(k)  k-. 

When such a distribution is found the estimate of the exponent of the distribution is an 
important and delicate task. The empirical detection is made difficult by the large fluctuations 
that occur in the tail of the distribution. A simple technique would be to calculate a linear 
OLS (ordinary least square) fit of the log transformed distribution. In fact: N(k)  k- translates 
into log(N(k))  -log(k). This method, however, is known to produce systematically biased 
estimates of the exponent by greatly underestimating it, and should not be used in most 
circumstances.  

Figure 4.3 shows an example of the results obtained in the three cases. The exponents 
calculated are: OLS = 1.16; CUM = 2.17; CSM = 2.320.27. The differences are evident. 
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Figure 4.3 A degree distribution with the three (OLS, CUM, CSM) calculated fits. The 
inset shows the cumulative distribution 

4.1.2 Modules	and	communities	

A complex network exhibits, in many cases, some form of substructure. Local subgroups can 
have a thickening of within-group connections while having less dense linkages with nodes 
outside the group (see Figure 4.4). The study of this modular structure of communities has 
attracted academic attention, since communities are a common trait of many real networked 
systems and may be central to the understanding of their organization and evolution. For 
example, a community’s social structure is revealed through the communication patterns 
within it.  

 
Figure 4.4 A modular network with a strong modularity (modularity index = 0.55). 
Dotted lines mark the three communities characterized by having a denser set of links 
inside them than towards other components of the network 
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Different definitions of modularity exist and researchers in this discipline have proposed 
several methods to measure it. These methods rely on numerical algorithms that can identify 
some topological similarity in the local patterns of linking (Fortunato, 2010). In all of them 
however, a measure called the modularity index is used to gauge the effectiveness of the 

outcomes. It can be calculated as: 
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modules, m is the number of links in the network, ms is the number of links between the nodes 
in module s (2ms is the sum of the degrees of the nodes in module s and 2m the sum of 
degrees in the whole network). . In other words, Q is the fraction of all links that lie within a 
community minus the expected value of the same quantity that could be found in a graph 
having nodes with the same degrees but with a random distribution of the links. 

For easing the comparison between networks with different numbers of communities, the 

index can be normalized by the number of modules NM (Du et al., 2009): Q
N

N
Q

M

M
norm 1

 . 

4.1.3 Network	Models	

After Euler (1736), probably the most important advancement in the study of networks is the 
work done by Erdös and Rényi. In a series of papers (Erdös & Rényi, 1959, 1960, 1961) they 
propose a model (ER model) in which a network is composed of a set of nodes and the links 
are placed randomly between pairs of nodes with probability p. The resulting degree 
distribution (in the limit of large numbers of nodes and links) follows a Poisson law with a 

peak k (the average degree of the network): k
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Figure 4.5 Formation of a giant component in an ER network shown by drawing the 
relative size of the largest component as function of the connection probability p (pc is the 
critical threshold) 
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Diameter, clustering coefficient and average path length of an ER network are proportional to 
the number of nodes and the probability p. The network also shows an interesting behavior 
when the connection probability increases. Above a certain critical threshold pc, a giant cluster 
forms (Figure 4.5). This giant cluster is a very large group of connected nodes encompassing 
most if not all of the nodes (depending on the value of p>pc). Below pc the network has 
several disconnected subgraphs. 

In the late 1990s, three influential papers (Barabási & Albert, 1999; Faloutsos et al., 1999; 
Watts & Strogatz, 1998) presented empirical evidence of networks exhibiting topological 
characteristics different from those hypothesized by Erdös and Rényi. Watts and Strogatz 
(1998) discuss networks in which, contrary to what was expected from an ER model, the 
clustering coefficient was much higher, and, at the same time, the average path length 
remained small. Reminding them of the Milgram experiment (Milgram, 1967), they named 
these networks small-world (SW) networks. In a small-world network, as happens in many 
social networks, any two nodes are likely to be connected through a very short sequence of 
intermediate neighbors. Many examples of real world networks have this characteristic (da 
Fontoura Costa et al., 2011). 

 
Figure 4.6 Degree distributions: Poissonian (A) and Power-law (B). The distributions 
refer to networks of the same order (1000 nodes) and size (3000 links) and are drawn on a 
chart with logarithmic axes. While the Poisson (random) distribution shows a 
characteristic curved shape, the power-law distribution can be fit with a straight line 
(dotted line in B) 

 

On the other hand, Faloutsos et al. (1999) and Barabási and Albert (1999) found evidence of 
networks having a degree distribution quite different from the random Poissonian ER 
distribution. Their networks exhibit a power-law scaling: P(k)  k- with an exponent  > 1. In 
other words, in their networks, a small fraction of nodes have a large number of immediate 
neighbors (often called hubs), while a large number of nodes have a low degree (see Figure 
4.6). 

These networks are called scale-free (SF) because they do not have a distinctive scale; a 
typical number of connections per node as is found in a Poissonian ER network in which the 
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average (mean) degree characterizes the distribution5. The SF model, first proposed by 
Barabási and Albert (1999), is a dynamic model. The power-law degree distribution is 
obtained if we consider a network as formed by adding nodes at successive time intervals, and 
adding links with a preferential attachment mechanism. A new node will connect with higher 
probability nodes with high degrees. A large number of real networks demonstrate this kind of 
rich-get-richer phenomenon although several additions and modifications are required to 
account for the differences measured between the theoretical model and the real networks. 

This basic model is modified in a number of ways: by introducing a fitness parameter which 
increases the probability that a newly added node will be selected by subsequent nodes; an 
aging limitation for which a node’s capability to accept connections ends at a certain time 
interval (age); or an information constraint which puts a limit on the number of nodes a 
newcomer may connect to. Moreover, even in networks that are not growing by the addition 
of nodes, links can be added, deleted or moved (rewired) to adapt the network to specific 
conditions. Thus other mechanisms, besides the preferential attachment family, exist that are 
able to generate a power-law degree distribution (Caldarelli, 2007; Newman, 2010). Mixed 
topologies have also been studied, both as abstract models (Mossa et al., 2002) and empirical 
observations (Baggio et al., 2007; Pennock et al., 2002). The main characteristic of these 
networks is that they have a degree distribution which follows a power law for the most part, 
but also has a bending or cut-off point. In statistical physics, power laws are associated with 
phase transitions (Landau & Lifshitz, 1980; Langton, 1990) or with fractal and self-similarity 
characteristics (Komulainen, 2004). They also play a significant role in the description of 
those critical states between a chaotic and a completely ordered state, a condition known as 
self-organized criticality (Bak et al., 1988). In other words finding a power law is one more 
confirmation of the complexity of networked systems. 

As previously noted, many real networks exhibit scale-free properties. Tourism-related 
examples include the world-wide airport network (Guimerà & Amaral, 2004); the websites of 
a tourism destination (Baggio, 2007); the structural properties of inter-organizational 
networks within destinations (Scott et al., 2008b); the paths followed by tourists reaching a 
destination by car (Shih, 2006); or the world-wide flows of tourist arrivals (Miguéns & 
Mendes, 2008). Many of these networks also exhibit small-world properties. 

This wide variety of network models and empirical cases can be summarized using the 
classification proposed by Amaral et al. (2000). These authors use the degree distribution P(k) 
to identify three broad classes of networks: 

o Single-scale: the degree distribution behaves exponentially (or with Gaussian or 
Poissonian tails). Members of this class are the random ER graphs and small-world 
networks. The latter, even if characterized by large clustering coefficients and short 
average path lengths still exhibit a Poissonian degree distribution; 

o Scale-free: the dynamic networks unveiled by Barabási with a power-law degree 
distribution. They are characterized by having few nodes which act as very 
connected hubs and a large number of low degree nodes. No characteristic mean 
nodal degree (scale) exists. These networks grow with the addition of new nodes and 
new links that follow specific mechanisms such as the preferential attachment in 
which a new node has a higher probability of attaching to an already highly 
connected node. This is the case of the tourism web network analyzed by Baggio 
(2007) and the Australian destinations studied by Scott et al. (2008b); 

                                                 
5 it must be noted that SW and SF characteristics are independent and may be present at the same time in a 
network.  
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o Broad-scale: a large class of networks with mixed types of degree distributions. 
Most of these have a basic power-law shape with a sharp cut-off of the low degree 
tail (exponential or Gaussian decay). Examples are the airport networks of China (Li 
& Cai, 2004) and India (Bagler, 2008) or the flow of tourists across countries 
(Miguéns & Mendes, 2008). 

Clearly the literature on complex networks demonstrates the strong relationship between the 
topological structure and the functioning of the system described. It also provides useful 
measures of the structural characteristics of the diverse networked systems presented here 
based on a variety of models. 

4.1.4 Dynamic	Processes	

A complex system is a dynamic entity: think of economies, companies or tourism destinations 
as living organisms existing in a state quite far from a static equilibrium. The only time in 
which they are in a full static equilibrium is when they are dead (Jantsch, 1980; Ulgiati & 
Bianciardi, 1997; Weekes, 1995). In the literature, the growing interest in development of 
models for a tourism destination (Butler, 2005a, 2005b), or the numerous methods devised to 
forecast some characteristic such as tourist demand (Frechtling, 2001; Song & Li, 2008) are 
good testimonials of the dynamic nature of these systems and the appeal of the study of these 
characteristics. 

Analysis of the topological properties of complex networks provides interesting and useful 
outcomes from a theoretical point of view. It is no surprise to find that this area has received a 
great deal of attention. The growth processes of all the basic network types discussed in the 
previous section (the random (ER) graphs and the different types of scale-free networks) have 
been studied. In this section we describe two dynamic processes which may occur to, and 
within, a network and which are significant for a tourism destination, our unit of analysis. 
These are resilience and diffusion of information. 

The first characteristic, a system’s resilience, is verified in many real-world systems. In a 
complex network it can be empirically assessed by looking at how its structural characteristics 
change when links or nodes are removed from the network. Several numerical simulations 
have shown that the behavior of a complex network that is under attack is strongly dependent 
upon its basic topology (Albert et al., 2000; Crucitti et al., 2004).  

In the case of a purely random removal (Figure 4.7), a SF network is more robust than an ER 
network, it preserve a good overall connectivity even after the removal of a large fraction of 
nodes. When the high degree nodes are targeted, however, the attack proves to be much more 
disruptive. Removing just a small fraction of these (about 15%) can completely destroy 
connectivity and leave the system as a set of isolated islands.  

A mathematical representation of a system can be used to perform simulations of processes. A 
simulation can be a powerful tool to create different scenarios and the numerical methods 
invented have been transformed into computer programs and used in a wide number of 
disciplines. For systems such as social groups, this technique is, in many cases, the only one 
available to perform experiments and to study different settings (Axelrod, 2006; Gilbert, 
1999). Obviously, as the most important literature on the subject reports (Balci, 2003; 
Stauffer, 2003), when a social system is involved some precautions must be taken.  
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Figure 4.7 Effects of random (errors) and targeted removals (attacks) for random (ER) 
and scale-free (SF) networks on the relative size of the largest component of the network 
(adapted from Boccaletti et al., 2006). The SF network shows a better capacity to absorb 
random removals (2) than an ER network (1), but is much more sensitive to targeted 
attacks to the high degree nodes (3) 

 

In order to ensure the reliability and validity of the results, some conditions must be met: a 
strong conceptual model is the most important prerequisite, along with the credibility which 
may derive from the specific techniques used, and the comparison with other analytical results 
available, or real responses of the system measured empirically in some situation (Adrion et 
al., 1982). If this happens, numerical simulations of socio-economic systems can provide very 
effective tools to support management practices. These represent a significant departure in 
approach from the usual, and open the way for the adaptive approach advocated by those 
convinced that a tourism destination is a complex, and sometimes even chaotic, system that 
should be dealt with in a non-deterministic way (Baggio et al., 2010a; Farrell & Twining-
Ward, 2004; Faulkner & Russell, 1997). 

The second characteristic is the diffusion of information through a network. In a tourism 
destination, the diffusion of information or knowledge is a crucial process for balanced 
development. Here, the determinants favoring this process are of paramount importance 
(Argote et al., 1990; Cooper, 2006). The network effects of this process are well known 
(Valente, 1995; Wendt & Westarp, 2000), but the possibility of a numerical simulation in the 
framework of network science can be of great theoretical and practical value. 

Consider the diffusion of a message in a network and observe the influence of the network 
topology. Epidemiological diffusion is a well-known phenomenon for which complete 
mathematical models have been devised (Hethcote, 2000). It has been known since the work 
of Kermack and McKendrick (1927) that the process shows a clearly defined threshold 
condition for the spread of an infection. This threshold depends on the density of the 
connections between the different elements of the network. However, this condition is valid 
only if the link distribution is random (as in an ER network). In some of the structured, non-
homogeneous networks that make up the majority of real systems such as SF networks, this 
threshold does not exist (see Figure 4.8). Once initiated, the diffusion process unfolds over the 
whole network (Pastor-Satorras & Vespignani, 2003). 
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Figure 4.8 Fraction of infected individuals () as a function of spreading rate () for a SF 
network (solid line) compared to an ER network (dotted line) (after Pastor-Satorras & 
Vespignani, 2003). In an ER network the presence of a threshold for initiating the 
diffusion is evident while an SF network is lacking a critical onset of the epidemic 

 

Finally, it must be noted that the analysis of many network properties can be conducted by 
looking at the distributions of the eigenvalues (called spectrum) of the adjacency matrix. 
Spectral methods have proved to be quite effective and, in some cases, easier to handle than 
more traditional algorithmic techniques. (see for example Seary & Richards, 2003; Van 
Mieghem, 2010). 

4.2 Reading	the	numbers	

The different metrics discussed in the previous sections have important interpretations and 
implications for what concerns the structure and the behavior of the system. 

At an individual level (single nodes) they are usually associated with a notion of importance 
(in network terms: centrality). Thus higher degree means having more connections than others 
and being able to reach directly more other elements, higher closeness means being able to 
reach all other nodes more quickly, high betweenness means being important bridges between 
different parts of the network (and also being a bottleneck), higher eigenvector indicates 
higher importance because connections to high-scoring nodes contribute more to the score of 
the node in question than equal connections to low-scoring nodes (Google's PageRank is a 
variant of the eigenvector centrality measure), higher clustering coefficient means having 
denser local neighborhoods and thus higher degree (capability) of collaboration or 
cooperation.  

It must be noted that the network literature has not found an agreement on the “best” metric to 
indicate the importance of a single node. Different measures point out different aspects, 
therefore a suggestion can be to use a synthetic indicator which can be calculated as the 
geometric mean of the normalized versions of a set of metrics (typically degree, clustering 
coefficient, eigenvalue centrality, betweenness, closeness). 
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At a global level (whole network), the form of the degree distribution has a direct influence on 
the properties of a network and accounts for its basic topology. A power-law degree 
distribution is considered to be the signature of complexity in a system. In fact, features of 
self-similarity and self-organization which are the most important characteristics of a complex 
system, are mathematically rendered, at least asymptotically, through a power-law distribution 
of certain parameters (size of components, number of connection, distribution of elements 
etc.). A power-law relationship is scale-invariant, i.e. no characteristic value can be defined to 
“summarize” the parameter (in a Gaussian distribution this would be the average) and the 
behavior of the parameter is the same when examined at different scales (Baggio 2008b; 
Baggio et al. 2010b). Moreover, such a distribution explains well the typical resilience of a 
complex system that can be at the same time quite robust with respect to random shocks 
leading to the (undifferentiated) removal of nodes and have high fragility when targeted 
attacks are directed toward the most important (highly connected) elements (Newman 2010). 

However, the degree distribution alone cannot convey all the information on the network 
structure. In fact, two networks can have similar distributions yet exhibit different static or 
dynamic characteristics that are, generally, determined by the presence of a correlation 
between the degrees (Bounova & de Weck, 2012; Serrano et al., 2007). This correlation 
(assortativity) plays an important role in determining how a propagation process 
(perturbations, information or influence diffusion) unfolds on the network. If a perturbation 
starts from a node (and highly connected nodes are powerful amplifiers) it can affect with a 
certain probability its first, second, and sometimes even more distant neighbors in the 
corresponding network. Moreover, the resilience of a network, that is its capacity to withstand 
external or internal shocks without being disrupted but recovering in a reasonable period of 
time, is very sensitive to degree correlations (Newman, 2002). In short, the more assortative a 
network is, the higher its resilience (Serrano et al., 2007). 

The average clustering coefficient can provide (as said) an indication of the extent to which 
the tourism organizations work together collaborating or cooperating, i.e.: forming cohesive 
communities inside the destination. Along this line, the assortativity coefficient indicates a 
tendency to form cooperative or collaborative groups. The extent to which collaborative or 
cooperative practices are common in a destination can be judged also by looking at the 
modularity index obtained after having identified the best community subdivision with one of 
the many stochastic algorithms existing. More importantly, the clustering coefficient can be 
used to uncover the hierarchical organization of the networked system. Ravasz and Barabási 
(2003) have shown that the relationship between the average clustering coefficient and the 
degree of the nodes signals a hierarchical structure when it follows a power-law functional 
form: Cave(k)  k-. 

Local and global efficiency, as said, indicate the capability of the networked system (global) 
or of a single node (local) to exchange information (or other). The underlying idea is that it is 
easier to transfer information from one node to another if they are closer to each other. Global 
and local efficiencies depend strongly on the general topology of the network (number and 
distribution of connections), and, in the case of a weighted network  may influenced by the 
value associated with each connection which affects the calculation of the shortest (lowest 
weight) path between two nodes. 

Small-world networks, in which nodes are more closely (topologically) arranged than in 
random networks are characterized by an average path length that increases logarithmically 
(or more slowly) with the number of nodes: Lave(n)  ln(n). Another way for assessing the 
small-worldness of a network is to compare the ratio between the clustering coefficient and 
the average path length of the network with those of a network with the same number of 
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nodes and links but with links placed at random. This quantity is called proximity ratio 
(Humphries & Gurney, 2008; Walsh, 1999):  = (C/L)/(Crand/Lrand). The ratio can be 
calculated considering that in a purely random ER network the average clustering coefficient 
is given by: Crand =kave / n (Albert & Barabási, 2002), while the average path length is 
approximated by (Fronczak et al., 2004): 

௥௡ௗܮ ൌ
lnሺ݊ሻ െ ߛ

lnሺ݇௔௩௘ሻ ൅ 0.5
 

(in both formulas kave is the average degree, n the number of nodes and  is the Euler constant  
  = 0.577216). 

It is important to note here that in order to have a significant meaning, all the metrics should 
be compared either to those of some known family of similar systems, or to a null model. In 
this case a simple solution is to generate a network having the same order (number of nodes) 
and size (number of links) of the network studied, but with links placed at random. This, 
however, disregards the possible effects of high heterogeneity of the degree distribution, 
therefore a better possibility, as suggested (Guimerà et al., 2004), is to prepare a randomized 
version of the original network obtained by rewiring it while preserving the degree 
distribution. Obviously, given the “randomness” of a null model, the relative metrics should 
be calculated as averages over a certain number of different realization of the null model (at 
least 10, better 100). 

4.3 Methodological	issues	

Two key issues need consideration in progressing network science and the study of tourism. 
The first of these relates to the practicalities of collecting data pertaining to a network. The 
second is the epistemological legitimacy of applying the laws and methods of physics to a 
social activity such as tourism.  

4.3.1 Data	Collection	

Fully enumerating the data relating to the totality of a network (nodes and links) is not 
possible on many occasions. This failure is especially true for social and economic systems, 
and is certainly the case for a tourism destination. Using sampling to study complex networks 
is possible but this requires careful application. Standard statistical considerations apply as 
long as we are considering a system in which the elements are placed at random, as in the case 
of an ER network, and where the significance of the sample is assessed with standard methods 
(Cochran, 1977). We have seen however that the effects of removing links or nodes from a 
non-homogeneous system such as an SF network can lead to dissimilar results and is element 
dependent. As a result, a sample of a network missing some critical hubs leads to erroneous 
conclusions about its topology. 

The problem has been highlighted as a consequence of recent discoveries in the field. It has 
been found that in the case of a structured network (scale-free, for example) it is not possible 
to easily determine the significance of a sample collected. Depending on the results of the 
analysis of the data available, the researcher needs to judge and make an educated guess of the 
final topology exhibited by the whole population; the whole network. In the cases in which 
this is possible, then, what can be done is to know how some of the main network metrics 
vary with the size of the sample and the topology of the network. 
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Table 4.1 Effects of sampling on SF network properties. As the sampling fraction of 
nodes or links decreases (), the quantity may increase (), decrease (), stay the same 
(), or behave according to the specific situation () 

 Degree 
distribution 

exponent 

Average 
path length 

Clustering 
coefficient 

Betweenness Assortativity 

Nodes   ()    

Links   ()    

 

For example, according to the literature, in the case of a SF network (Table 4.1), degree 
distribution exponent and average path length decrease when nodes or links are sampled, 
assortativity coefficient has little or no change and the clustering coefficient decreases when 
nodes are sampled, but increases when links are sampled (Kossinets, 2006; Lee et al., 2006; 
Wang et al., 2012). 

4.3.2 Epistemological	consideration	

As economists are the experts on consumer attitudes and sociologists on human social 
interaction, physicists are considered experts in simplifying complicated problems. However, 
one usually does not ask a physicist about stock-market forecasts (Duan & Stanley, 2011), 
neither does one immediately think of a physicist when the issue concerns controlling civilian 
crowds (Helbing et al., 2005). Scientists dealing with many real problems do not take kindly 
to the propensity of physicists entering their field of study and proposing overly simplified 
theories. One even often hears jokes about physicists assuming chickens to be spherical. 
However, simplifications and assumptions happen, sometimes, to be pretty helpful in solving 
a specific real-life problem. As Duncan Watts writes (Watts, 2003: 61-62): 

“Physicists, it turns out, are almost perfectly suited to invading other people's 
disciplines, being not only extremely clever but also generally much less fussy 
than most about the problems they chose to study. Physicists tend to see 
themselves as the lords of the academic jungle, loftily regarding their own 
methods as above the ken of anybody else and jealously guarding their own 
terrain. But their alter egos are closer to scavengers, happy to borrow ideas and 
techniques from anywhere if they seem like they might be useful, and delighted 
to stomp all over some else's problem. As irritating as this attitude can be to 
everybody else, the arrival of the physicists into a previously non-physics area 
of research often presages a period of great discovery and excitement. 
Mathematicians do the same thing occasionally, but no one descends with such 
fury and in so great a number as a pack of hungry physicists, adrenalized by the 
scent of a new problem.” 

Obviously not all assumptions can be taken as valid. They must retain the essential features to 
explain what we observe. Take rubber ball, for example. The complicated system we call air 
is composed of a huge number of molecules of nitrogen, oxygen, and many other. Each one of 
these molecules is an arrangement of atoms with different weights, and each atom is a system 
of elementary particles interacting according to specific forces. To explain why the ball 
expands when filled with air, however, we do not need all these details. It is possible to 
assume that air is a set of small identical spheres traveling in all directions and colliding 
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among them and with the walls of the ball. These collisions are essentially what is responsible 
for what we call gas pressure. Everything else can be ignored. 

Applying the laws and methods of physics to a socio-economic system such as a tourism 
destination may raise an issue of epistemological legitimacy and is an area where there is little 
relevant prior literature. There is a variety of works dealing with these questions for both 
natural and social sciences, examining the attitudes and positions of researchers with regard to 
their approaches and methodologies (Durlauf, 1999; van Gigch, 2002a, 2002b). The specific 
problem of the applicability of a physical approach to social systems however, is rarely 
discussed and if so, usually as a secondary topic. Physicists do not seem to feel the need to 
epistemologically justify their use of the knowledge and tools of physics in investigating other 
fields. Justifications and discussions are the job of the epistemologist and usually come very 
late in the development of a field of study. Justifications are not considered necessary when, 
as in the case of network science, a discipline is still in a very early stage of development.  

From a sociologist’s perspective however, the application of physical network theory may be 
rejected as irrelevant because it fails to address the recursive agency in the behavior of groups 
of people. Recursive agency refers to the ability of individuals to recognize their networked 
relationships and take proactive steps to change or modify their behavior. Thus, a sociologist 
may refuse the use of physical laws to model human behavior on the grounds that such laws 
do not apply. 

One of the reasons for this refusal can be that a non-physicist has, sometimes, a mistaken idea 
of what physics is. Bernstein et al. (2000), for example, consider that sociologists mistakenly 
believe that the ideas of physics are mainly those of Newtonian mechanics where single or 
small sets of particles are studied. Such particles have well defined characteristics (mass, 
velocity, energy) and their equations of motion can be described and investigated. 
Consequently, a key objection of sociologists is that a social actor is completely different 
from these homogeneous particles, and thus the methods of physics are too simplistic a 
representation to use in social science. 

However, the aims of physicists are not about achieving such individual predictive outcomes. 
In studying a socio-economic system we can focus upon its global behavior and the 
possibility of making predictions at a system level rather than seeking to predict the conduct 
of single elements (individual actors). This aim seeks to understand how regularities emerge 
out of the apparently erratic behavior of single individuals (Majorana, 1942). From this 
perspective, a comparison of theoretical predictions with empirical data has two key 
objectives: (i) of verifying whether the trends seen in the data are compatible with a 
reasonable conceptual modeling of the idealized actors: and (ii) whether there is some level of 
consistency or if additional factors are required to provide a fuller explanation. 

In these circumstances, as Castellano et al. (2009) note, only high level characteristics, such 
as symmetries, energy balance, or conservation laws are relevant. These, as the findings of 
statistical physics show, do not depend on the individual details of the system but possess 
some universal characteristics. Thus, if the aim is to examine such global properties, it is 
possible to “approach the modelization of social systems, trying to include only the simplest 
and most important properties of single individuals and looking for qualitative features 
exhibited by models” (Castellano et al., 2009: 592). These considerations lead us to justify the 
application of the laws and methods of statistical physics to the study of a socio-economic 
system such as a tourism destination, with the condition that the quantitative techniques rely 
on sound and accepted qualitative interpretations of the phenomena. The vast theoretical and 
empirical literature accumulated in recent years has shown network science to be an effective 
tool for understanding complex socio-economic systems. 
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Trying to simplify reality down to its elementary components and interactions for explaining a 
certain phenomenon is what leads physicists to uncover fundamental laws of nature. And 
schematically, it is also precisely what the network approach is about: the components of the 
system under study are reduced to elements that retain the essential features we want to 
address and the interactions between such components are represented by links joining the 
elements. Elements could be molecules with links representing the collisions among them, but 
they could also be seen as persons linked by their friendship acquaintances or as enterprises 
connected among them according to the trades or the agreements they establish.  

4.4 Software	tools	

It is rather clear that, apart from the case of very small networks (a few tenths of nodes) the 
analysis requires appropriate software tools. The area in constantly evolving and new 
programs continue to appear therefore any list would be of limited validity. The best reference 
is the Wikipedia page Social network analysis software (http://en.wikipedia.org/wiki/ 
Social_network_analysis_software). It contains an extensive list along with the main 
characteristics of the programs. Some of them (such as NodeXL, Pajek, Gephi, Ucinet etc.) 
are of general use, while some have been developed for specific tasks, or are a reference to 
libraries to be used by some programming language.  

More personalized or particular analyses (diffusion simulations, for example) may require to 
write a specific script or program. Programming languages and development environments 
will require some more effort if writing computer code is not a familiar task, but they offer the 
greatest flexibility for analysts to design their own algorithms and procedures. Any 
programming language is suitable, some of them are commercial products and can be quite 
expensive. In many cases, however, free clones exist. These show a relatively good 
compatibility with the original language and the Web provides good information about how to 
translate the scripts between them. Obviously, in many cases and for special functions, a 
direct translation is not possible and the programs must be completely rewritten. Finally, 
clones can be a little less stable and reliable than their original counterparts.  

Quite used are languages such as Matlab (with its free clone Octave) or Python. These have 
the advantage of being relatively easy and fast to learn with respect to more traditional 
languages such as C++, Fortran or Java. These relative higher usability however, is at the 
expense of execution speed (they are all interpreted languages) which can be an issue when 
very large networks (millions of nodes) need to be examined. For all these a Web search can 
provide a wealth of programs, functions, toolboxes and libraries quite often freely available. 

A final consideration is in order when the network examined is not a simple one-mode 
symmetric unweighted network. In this case it is advisable to check well whether and how the 
chosen software deals with them. Often, in fact, the network is symmetrized and unweighted 
before the calculations, thus leading to outcomes different from those expected. When this is 
not completely clear, a simple test can be performed (most times) by using a network and its 
symmetric unweighted version. The comparison of the results will make clear whether a 
difference exists. 
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5 Case study: a tourism destination 

This section describes a specific case using the network analysis methods described above. 
The case covers the Italian tourism destination of the island of Elba. Elba’s location is in the 
center of the Tyrrhenian Sea (Figure 5.1) off the coast of Tuscany, and it is a typical sun and 
sand destination. Elba’s economy depends mainly on the wealth generated by about half a 
million tourists spending some 3 million nights per year. Elba was selected for study as it is 
geographically distinct (as an island the boundaries are more clear than in other cases), has 
accessible records concerning tourism actors and has a scale suitable for detailed examination. 
The core tourism organizations (such as hotels, travel agencies, associations, public bodies), 
were identified from the official local tourism board and form the nodes of the network. The 
connections among them were enumerated by consulting publicly available documents such 
as membership lists for associations and consortia, commercial publications, ownership and 
board of directors records. The data obtained and its completeness were validated with a 
series of structured and unstructured interviews with a selected sample of local knowledgeable 
informants who included the directors of the local tourism board and of the main industrial 
associations, or consultants active in the area. These interviews revealed a very limited 
number of links that were not previously discovered and it seems reasonable to assume that 
the final network layout has a completeness of about 90%. All the links are considered 
undirected and of equal weight.  

5.1 Network	topology	

The network obtained is depicted in Figure 5.1. 

 

 
Figure 5.1 Elba island and its destination network 

 

Table 5.1summarizes the metrics calculated for this network. As a comparison the second 
column contains the values calculated for a random (ER) network of the same order and size 
(the values are averages over 10 realizations). The last column reports typical values for social 
networks published in the literature (da Fontoura Costa et al., 2011; Newman, 2010). 
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Table 5.1 Elba destination network metrics compared with a random network of the same 
order and size and with typical values for social networks 

Metric Elba network Random Social networks 
No. of nodes 1028 1028  
No. of links 1642 1642  
Density 0.003 0.003 10-1 - 10-2 
Disconnected nodes 37% 3%  
Diameter 8 13 10 
Average path length 3.16 5.86 10 
Clustering coefficient 0.050 0.003 10-1 
Proximity ratio 34.09 --- 102 - 103 
Average degree 3.19 3.25  
Global efficiency 0.131 0.169 10-1 
Local efficiency 0.062 0.003 10-1 
Assortativity coefficient -0.164±0.022 0.031±0.033 10-1 (>0) 

 

The degree distributions (differential and cumulative) for the network are shown in Figure 
5.2. The shape of the distribution follows a power law N(k)  k-. The exponent (and its 
standard error), calculated following the procedure proposed by Clauset et al. (2009) is  = 
2.32±0.27. 

 

 
Figure 5.2 The degree distributions of Elba destination network. N is the number of nodes 
having degree k (A) or greater than k (B, the cumulative distribution) 

 

The density of links is quite low, considering that the values found in the literature for the 
social networks studied are typically of the order of 10-1 – 10-2 (Boccaletti et al., 2006; 
Caldarelli, 2007; Newman, 2010). The percentage of nodes without connections is very high 
(39%). This results in a sparse network, also confirmed by the small value of the clustering 
coefficient. The efficiency of the Elban network is consequently quite low, both at a global 
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and a local level. Another value which is different from what would have been expected for a 
socio-economic network such as Elba, is the assortativity coefficient. This, as seen, represents 
the tendency of a node to connect with nodes having similar degrees. The correlation has been 
found to be positive for many of the social networks examined in the literature (Newman, 
2002), and, while debated by some authors (Whitney & Alderson, 2008), this positive 
correlation is generally considered to be a distinguishing characteristic of social networks 
with respect to other systems. On the other hand, the calculated values for diameter and 
average path length seem to be in line with those of other real social systems and sensibly 
smaller than those exhibited by a random network. This indicates a certain level of 
compactness of the Elban network, at least for its central connected core. This is also 
confirmed by the proximity ratio which indicates a good level of small-worldness of the 
network. 

The modularity of the network was calculated by dividing its actors with respect to the type of 
business (e.g. hospitality, associations, food and beverage services) and geographical location 
(Elba’s municipalities) (Table 2). As a comparison, the modularity was investigated using the 
algorithm proposed by Clauset et al. (2004) which partitions the network on the basis of its 
connectivity characteristics, without supposing any division in advance (CNM in Table 5.2).  

Table 5.2 shows the number of clusters identified (groups) and the modularity index. The last 
row reports the values calculated (CNM) for a network of the same order as the Elban 
network with a randomized distribution of its links (values are averages over 10 iterations). 
To better compare the different results, the last column of the table contains the normalized 
value for modularity. All groups have a very low modularity. In one case (grouping by type), 
the negative value indicates that the actors tend to have more connections outside the group to 
which they belong than with businesses within the group. The higher values found by the 
CNM algorithm confirm that division by geography or by type of business does not imply any 
strong clustering in these groups. In other words, no well-defined business-type or 
geographical groupings can be found in the destination. The fact that the randomized network 
has a lower but similar modularity with respect to that obtained by using the community 
detection algorithm on the original network is an indication that a distinct modular structure 
exists even if it is not very well defined or highly significant (Guimerà et al., 2004). In this 
socio-economic system, the topology generated by its degree distribution induces a certain 
level of self-organization which goes beyond pre-set differentiations (by geography or type) 
of the agents. 

 

Table 5.2 Elba network modularity analysis 

Grouping 
No. of 
groups 

Modularity 
Normalized 
Modularity 

Geography 9 0.047 0.053 
Type 8 -0.255 -0.291 
CNM 11 0.396 0.436 
CNM (random) 12 0.367 0.400 

 

5.1.1 The	analogy	between	the	real	and	virtual	network	

As a further example of the outcomes of the application of network science to a tourism 
destination, consider the virtual network among tourism companies. Once identified the 
websites belonging to the tourism stakeholders, the network was built by listing all the 
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hyperlinks among them (Baggio, 2007). This was accomplished by using a simple crawler and 
complementing the data obtained with a manual count of the hyperlinks to overcome the 
limitations of the program used (such as the impossibility of finding hyperlinks embedded in 
Flash applications or Java applets) .  

Let us now consider the degree distributions of the real (RN) and the virtual (VN) networks. 
As Figure 5.3 shows, apart from scale factors, the two distributions look quite similar. A 
formal confirmation can come from a statistical test. Obviously a non-parametric method 
must be used in our case and the Kolmogorov-Smirnov (KS) statistic is able to provide 
trustworthy results (Clauset et al., 2009). The KS D-statistic gives the maximum distance 
between the cumulative probability distributions of empirical data F(x) and G(x) over the 
entire x range: )()(max xGxFD x  . This statistic is nonparametric and as it is insensitive 

to scaling issues, it compares only the shapes of the empirical distributions (Siegel & 
Castellan, 1988). The value for the D-statistic calculated when comparing the degree 
distributions of RN and VN is 0.229 with a p-value < 10-13 thus confirming the substantial 
similarity between the two distributions and, consequently of the structural characteristics of 
the two networks. 

 

 
Figure 5.3 A comparison between the degree distributions of the real (RN) and virtual 
(VN) networks for Elba 

 

A strand of literature considers virtual networks as representations of the social relationships 
among the actors who are originating them. In essence: “computer networks are inherently 
social networks, linking people, organizations, and knowledge” (Wellman, 2001: 2031). Even 
if some argue that that the links are created in a rather unpredictable way, and it is not 
possible to find unambiguous meanings (Thelwall, 2006), private or public organizations and 
companies consider a hyperlink as a strategic resource, and the structure of this network is 
created by specific aims or communication, rather than by accidental choices (Park & 
Thelwall, 2003; Vaughan et al., 2006). 
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Based on these considerations and the network analysis, it is possible to formulate the 
following conjecture: the network of websites belonging to a cluster of (tourism) companies is 
a reliable sample of the whole socio-economic network formed by them. The obvious 
limitation is that the area taken into account must show a significant diffusion of the Internet 
and the Web. Yet nowadays, for a large part of the World, this is not a severe limitation. 

Rather than more or less randomly sampling a tourism destination network with the usual 
methods (Marsden, 1990), the Web provides us with a relatively fast, easy and objective way 
of sketching the main topological characteristics of such systems.  

 

 
Figure 5.4 Communities found in the Elba digital ecosystem. The real and the virtual 
components are closely structurally coupled 

 

More than that, starting from this consideration and examining the finer details of the 
structure of the combined real-virtual network (the one formed by tourism operators and their 
websites and the linkages between all these), as detected by a modularity analysis (Figure 
5.4), it is possible to show that the two components (real and virtual) are so strongly coupled 
that the term tourism business digital ecosystem assumes a valence that is not anymore a 
purely theoretical one (Baggio & Del Chiappa, 2013).  

5.2 Dynamic	Processes	

Information and knowledge flows in a destination are important factors for the general well-
being of the system and the manner in which the diffusion unfolds influences the competitive 
advantage of individual actors and their future planning. Productivity, innovation and 
economic growth are, in fact, strongly influenced by these processes, and the way in which 
the spread occurs can determine the speed by which individual actors perform and plan their 
future actions at the destination. In other words, the structure of the network will be influential 
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in determining the efficiency of the destination’s attempts to share knowledge and innovate 
(Argote & Ingram, 2000).  

A computer simulation can help assess the efficiency of information flows across the 
destination and test the capability of the system to react to changes in its structural 
parameters. Here, a simple epidemiological model can be employed where nodes are either 
susceptible to receiving information or already infected by it (i.e. they have received it). 
Despite its simplicity, this model is a reliable approximation and quite suitable to describe a 
knowledge transfer process (Barrat et al., 2008; Barthélemy et al., 2005). The simulation was 
conducted as follows: within a network, one randomly chosen stakeholder starts the spread by 
infecting a fraction ki of its immediate neighbors. At each subsequent time step, each infected 
element does the same until all the network nodes have been infected and the process ends. In 
this study, the model was run by adopting two different configurations.  

In the first case, the capacity of a stakeholder to transfer knowledge (spread infection) is used 
as a parameter for the model. It is defined as a probability p(ki) which determines the number 
of neighbors infected by a single actor. This justifies an important difference between the 
diffusion of information and knowledge and the spread of viruses. Viruses are indiscriminate, 
infecting any susceptible individual. Knowledge, on the other hand, is transferred only to a 
limited set of the individuals with which an actor has interactions (Huberman & Adamic, 
2004). 

Particular actors then can have different absorptive capacities (Cohen & Levinthal, 1990; 
Priestley & Samaddar, 2007). Absorptive capacity refers to different capabilities to acquire 
and retain the knowledge available to an actor due to the associated costs or their internal 
functioning, and to transfer it to other actors. In tourism, this issue is crucial for the large 
number of small businesses that typically rely on external contacts for information. In the 
reasonable assumption that p(ki) depends on the size of the stakeholder, the network nodes 
were divided into three classes: large, medium and small (in our case we have the following 
proportions: large = 8%, medium = 17%, small = 75%). The values for p(ki) used in the 
simulations run are (arbitrarily) set as: p(klarge) = 1, p(kmedium) = 0.8, and p(ksmall) = 0.6.  

The second type of simulation aims at testing the influence of a network’s structure, and 
particularly how the cohesion among stakeholders can affect the knowledge transfer process. 
In this case the experiment was performed with a modified version of the original network 
obtained. This was achieved by rewiring the connections while leaving unchanged the original 
connectivity (i.e. the number of immediate neighbors of each stakeholder and overall density 
of linkages), in order to obtain a higher clustering coefficient and a higher efficiency. The 
algorithm used is similar to the one proposed by Maslov and Sneppen (2002). The new 
network has a clustering coefficient C = 0.274 and a mean local efficiency Eloc = 0.334, as 
opposed to the original one whose values are C = 0.084 and Eloc = 0.104 (only the fully 
connected component of the Elban network was used, i.e. all isolated nodes were removed).  

As a comparison, a random network (same order and density, and random distribution of 
edges) was used. The time of peak diffusion, which can be used as an indicator of the process 
efficiency, decreases by 16% when comparing the random network with the Elban network 
containing different actors’ capabilities. This is to be expected, due to the non-homogeneity of 
the network. When changing to equal capabilities (the original Elban network), a 22% 
reduction in the time of peak diffusion is found. A further consistent decrease (52%) is found 
when the local densities (clustering) are increased. Figure 5.5 shows the cumulative number 
(as a percentage of total) of stakeholders that are infected as function of time for the different 
simulations preformed. 
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Therefore, the interventions made have a significant impact on the information diffusion 
process. The spread of knowledge is faster if the network’s connections are not distributed at 
random (scale-free in our case), knowledge improves if all the stakeholders have equal 
absorptive capacities (the maximum) and is even more enhanced when the extent of formation 
of local groupings (collaborative communities) increases.  

 

 
Figure 5.5 Cumulative percentage of informed stakeholders for the simulations 
performed: rewired network (RW), Elba network with equal probability of transmission 
(EN), with probabilities scaled according to stakeholder size (EDiff) and a network of 
same size with a random distribution of links (Rnd). Curves are averaged over 10 
realizations of the simulations. 

 

These results naturally suggest policy actions, but provide also a means of “testing” the 
possible outcomes of these actions. It would be relatively simple, in fact, to modify the 
network, make some educated guesses on the effects of different actions and re-run the 
diffusion simulation to assess the results. 

5.3 Discussion	

The results and the analyses of the Elban tourism destination network turn out to be useful 
indicators for the understanding of its structure and dynamics. Despite an obvious theoretical 
interest, these outcomes can provide also valuable indications for the governance of the 
destination. 

The low density and clustering coefficient give a quantitative assessment of the poor 
collaborative atmosphere, but this could have been missed when not very deep qualitative 
studies would have been conducted. Same can be said of the tendency to cooperate as 
measured by the assortativity coefficient. The modularity analysis has then offered evidence 
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of the real division in communities of the destination. In this way actions and policies could 
be better designed than if continuing to use the traditional typology-based groupings. They 
would result more effective because founded on appraised self-organized subdivisions rather 
than directed to practically non-cohesive groups. The simulations on information diffusion 
can provide ways to simulate different scenarios and test the effects. Finally, the important 
structural role played by the virtual Web world can further emphasize the necessity to exploit 
all the possibilities offered by the modern technologies so that the digital ecosystem can work 
efficiently and effectively. 

All these considerations must be, obviously, verified and validated with a good qualitative 
knowledge of the system, but, in summary, network analytic methods can be a powerful 
complement to more traditional forms of enquiry in order to support the activities of the 
governing bodies that aim at a sustainable development of the destination and of all its 
stakeholders. 
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6 Concluding remarks 

This contribution has described the methods and the techniques that complexity science, and 
in particular network science, provides for the study of complex adaptive systems and as an 
example of their application, the case of a tourism destination has been discussed along with 
some of the implications of this approach. Network analysis methods are undoubtedly an 
intriguing and intellectually stimulating exercise. However, no matter how sophisticated and 
effective theoretical techniques can be, they have little value when applied to a phenomenon 
without coupling them with sound physical interpretations. Translating this into the language 
of social science this means that a thorough knowledge of the object of analysis is crucial to 
obtain meaningful outcomes from both a theoretical and a practical point of view. On the 
other hand, a pure qualitative investigation risks missing or misinterpreting important factors 
in the study of a complex network, because, as seen, on many occasions the quantitative 
analysis provides rather unexpected outcomes.  

As Gummesson (2007: 226) points out:  

“By abolishing the unfortunate categories of qualitative/quantitative and 
natural sciences/social sciences that have been set against each other, and 
letting them join forces for a common goal – to learn about life – people open 
up for methodological creativity, therefore qualitative and quantitative, natural 
and social are not in conflict but they should be treated in symbiosis”.  

In the 21st Century, the strong focus on issues such as partnership, collaboration, cooperation 
and the benefits of the tools available for the investigation of the relationships between the 
components of a socio-economic system have been discussed in general management studies. 
The implications go well beyond the simple study of networks. These methods have the 
strong potential to inform a wide number of concerns such as the study of organizational 
structures, the use of technology, the study of epidemiological diffusion (from diseases to 
marketing or policy messages), the formation of consensual opinions and their impacts 
(Parkhe et al., 2006) 

In this respect, the methods of network science can prove beneficial in deepening the 
knowledge of the whole system and, coupled with more traditional procedures, can provide 
powerful tools to enable those adaptive governance practices considered by many the only 
practical way to steer the collective efforts of multiple organizations (Bankes, 2002; Farrell & 
Twining-Ward, 2004; Holling, 1978; Ritter et al., 2004). 

The possibility of using quantitative techniques to analyze the relationships between tourism 
operators opens new pathways for the researcher interested in the structure, the evolution, the 
outcomes, and the governance of the system. Further research in this area will need to confirm 
the results obtained so far by increasing the number of examples studied. The methods 
employed clearly require some additional refinement both from a practical and a theoretical 
point of view. The ever growing number of studies in network science on the dynamic 
evolution of a complex networked system may suggest new models and new approaches 
which will need careful consideration before they are applied to the field of tourism.  

As a final point, it is a firm conviction of the author that a more rigorous establishment and 
adoption of methodological tools such as those used in this work can be a powerful way to 
help tourism research transition towards a less undisciplined array of theories and models 
(Echtner & Jamal, 1997; Tribe, 1997). 
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Appendix I: Exercises and suggestions 
 
Exercise 
 
Consider the following adjacency matrix: 
 

  v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
v1 0 0 0 0 1 0 0 0 0 0 
v2 0 0 1 0 1 0 0 0 1 0 
v3 0 1 0 1 1 0 0 0 0 0 
v4 0 0 1 0 1 1 0 0 1 1 
v5 1 1 1 1 0 0 1 0 1 0 
v6 0 0 0 1 0 0 0 0 0 1 
v7 0 0 0 0 1 0 0 1 1 0 
v8 0 0 0 0 0 0 1 0 1 0 
v9 0 1 0 1 1 0 1 1 0 0 

v10 0 0 0 1 0 1 0 0 0 0 
 
Without using any specific software, answer the following: 
 

1. draw the network 
2. is the network directed or undirected? 
3. is the network connected? 
4. what is the number of edges? 
5. what is the density of the network? 
6. find the node with highest degree   
7. find the shortest path between v1 and v10 (list also at least 3 other paths) 
8. find a possible candidate “highest betweenness” 
9. find a possible candidate “highest clustering coefficient” 

By using a network analysis software of your choice input the data (you might need to 
transform the matrix into a list of links) and check the answers given above and find the 
diameter and the average values for: degree, clustering coefficient, betweenness, closeness. 
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Answers: 
 

Network metrics 

Total Edges 16
Diameter 3
Average distance 1.680
Density 0.356
Average degree 3.200
Average clustering coefficient 0.603
Average betweenness 3.900
Average closeness 0.062

 

 

Vertex Degree Clustering 
coefficient Betweenness Closeness Top 3 vertices 

v1 1 0 0 0.050 Degree
Clust. 
coeff.

Betweenness Closeness

v5 v6 v4 v5
v4 v8 v5 v4
v9 v10 v9 v9

 

v2 3 0.667 0.583 0.059
v3 3 0.667 1 0.063
v4 5 0.300 14.583 0.077
v5 6 0.333 12.833 0.083
v6 2 1 0 0.050
v7 3 0.667 1.250 0.059
v8 2 1 0 0.050
v9 5 0.400 8.750 0.077

v10 2 1 0 0.050
 

  



 

 65

Suggestions 
 

More than exercises the following are suggestions for practicing one or more of the 
methods described in the previous pages. The first suggestion is to download, install and 
start using one of the software for network analysis cited (see section 4.4). All software 
come with a set of files containing network data which can be useful in order to practice 
with the different functions. It is important to choose a network of “reasonable” size. If 
the network is too small some of the measurements might be of little meaning, if it is 
too big the results can be confusing. Ideally it would be better to start with networks of 
about 100 nodes. 

 
Class network 
 

In a course (or a small conference) prepare a list of the participants. Ask each one of 
the participants to indicate all the friendship relationship with the others. Transform 
the results into a file that can be read by the software package used. One simple format 
is the one used by Pajek, which is, usually, also readable by other software programs. 
Pajek network files are in plain text, with a very strict format. The format is as 
follows: 

*Vertices number_of_vertices 
1 "label1" 
2 "label2" 
  etc… 
*Edges (*Arcs if the network is directed) 
vertex1 vertex2 
vertex3 vertex4 
  etc… 

For example, given the following list of connections 
 

Bryan Anna 
Anna Nick 
Betty Bryan 
Nick Betty 
Sara Nick 
Nick Bryan 

 
the Pajek network file is: 

*Vertices 5 
1 "Bryan"  
2 "Anna"  
3 "Nick"  
4 "Betty" 
5 "Sara"  
*Edges 
1 2 
2 3 
3 1 
3 4 
4 1 
5 3 
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Note that whitespaces are spaces, not tabs. Any program can be used for writing a 
Pajek file, just make sure to save it as text-only file with a .net extension. 
 
Once read the file start the analysis The first step, usually, is to obtain a picture of the 
network. Then calculate all the relevant global metrics (density, diameter, average path 
length) and rank the nodes (people). Identify the peculiar elements: highest degree, 
highest closeness, highest betweenness etc. 

 
Facebook friends network 
 

Download the network data of your Facebook friends. Depending on the network 
analysis software used you can find easily instructions and tutorials with a little 
Google searching (using something like “facebook friends network data”). Read the 
tutorial found. 
 
Draw the network and identify the most important members of your community by 
calculating the most important network metrics (degree, clustering coefficient, 
betweenness, eigenvalue centrality etc.) 
 
Run a modularity analysis. The method used will depend on the software; if the 
software allows, run the analysis using different methods. Identify the main groups 
and compare the partitioning calculated with what you know about your friends; assess 
the extent to which the algorithm is able to reproduce the real groupings. If you have 
used different algorithms find the most suitable for your case. 

 
Website network 
 

Prepare a list of companies along with their websites. For example the tourism 
operators in a destination.  Record also the type (accommodation, travel agency, 
restaurant, association, public body, local transport, other tourism services, etc.) and, if 
possible, the geographical location (using classes such as region, area, closeness to 
center, etc.) for the different companies. 
 
Browse the websites and record the hyperlinks to other any external websites. It is 
advisable to limit the browsing to a reasonable depth (3 to 5 levels). Transform the 
results into a file that can be read by the software package used and start the analysis. 
 
Identify, as for the class network, the most central elements. If you have data on, or 
can make a reasonable hypothesis on, the relative importance of the different 
companies, compare these with some of the centrality measures and find the metric 
most suitable to represent the companies’ importance. 
 
Run a modularity analysis and compare the communities found with those defined in 
terms of type of business or geography. 
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Appendix II: Essential readings 
 
  NB: all the papers cited here can be found online (full text) with a Google search, at least in their 

pre-print version. 
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