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ABSTRACT 
In this study we characterized the dynamics and analyzed the degree of synchronization of the time 
series of daily closing prices and volumes in US$ of three cryptocurrencies, Bitcoin, Ethereum, and 
Litecoin, over the period 01/09/2015-31/03/2020. Time series were first mapped into a complex 
network by the Horizontal Visibility algorithm in order to revel the structure of their temporal 
characters and dynamics. Then, the synchrony of the time series where investigated to determine the 
possibility that the cryptocurrencies under study co-bubble simultaneously. 
Findings reveal similar complex structures for the three virtual currencies in terms of number and 
internal composition of communities. To the aim of our analysis, such result proves that price and 
volume dynamics of the cryptocurrencies were characterized by cyclical patterns of similar 
wavelength and amplitude over the time period considered. Yet, the value of the slope parameter 
associated to the exponential distributions fitted to the data suggests a higher stability and 
predictability for Bitcoin and Litecoin than for Ethereum. 
The study of synchrony between the time series investigated displayed a different degree of 
synchronization between the three cryptocurrencies before and after a collapse event. 
These results could be of interest for investors who might prefer to switch from one cryptocurrency 
to another to exploit the potential opportunities of profit generated by the dynamics of price and 
volumes in the market of virtual currencies. 
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INTRODUCTION 
The rapid and successful diffusion of Bitcoin and digital currencies, as a practical mean of payment 
for online services and goods and substitute of traditional money assets, has attracted a remarkable 
attention. Much of the social debate centers on cyber-security, legitimacy, and reputation issues due 
to possible hacking attacks of the peer-to-peer network used for the electronic payments, which 



allows anonymous transactions and carries risks as money laundering, the financing of criminality 
and terrorism, and tax evasion. 
More recently, the high volatility of price series has fostered an increasing interest in bubbles 
detection and price dynamics of cryptocurrencies in the associated markets (Garcia et al., 2014; 
Bouoiyour et al., 2015; Donier and Bouchaud, 2015; Hencic and Gouriéroux, 2015; Blau, 2017). 
Bariviera (2017), Bariviera et al. (2017), and Lahmiri et al. (2018) studied the long-range 
dependence of return and volatility, and other statistical features of Bitcoin daily and intraday 
prices, from 2011 to 2017. They found the long-range correlation behavior in the daily volatility 
series of Bitcoin. Lahmiri and Bekiros (2018) showed that, as opposed to returns, Bitcoin prices 
incorporate and exhibit chaotic dynamics and non-trivial correlation patterns at different time 
scales. By using methods that originate in physics, Cheah and Fry provided empirical evidence that 
Bitcoin prices contain a substantial speculative bubble component (Cheah and Fry, 2015), and 
identified shocks and crashes in cryptocurrency markets with specific evidence for negative bubbles 
(Fry and Cheah, 2016). Corbet et al. (2018) related Bitcoin and Ethereum prices to ‘‘fundamental 
drivers’’ to reveal the existence and dates of bubbles periods in the market. By applying the 
methodology discussed in Phillips et al. (2015) Cheung et al (2015), Li et al. (2019), and Bouri et 
al. (2019) aimed at detecting a bubble behavior in price dynamics at some point in time. Chaim and 
Laurini (2019) and Cretarola and Figà-Talamanca (2019b) related to strict local martingale theory 
to investigate price dynamics of Bitcoin by a continuous time stochastic model. More precisely, 
Chaim and Laurini (2019) estimated the volatility function of Bitcoin daily and high-frequency five 
minutes prices, whereas in Cretarola and Figà-Talamanca (2019b) the association of 
cryptocurrencies price dynamics with investors’ attention and sentiment is described with a regime-
switching correlation parameter. The impact of market attention on Bitcoin returns and volatility is 
also the research interest in Kristoufek (2013, 2015), Figà-Talamanca and Patacca (2019), Cretarola 
et al. (2019), Cretarola and Figà-Talamanca (2019a). Lahmiri and Bekiros (2020) explored the 
evolution of the informational efficiency in 45 cryptocurrency markets and 16 international stock 
markets before and during COVID-19 pandemic. They found that investing in digital assets during 
big crises could be considered riskier as opposed to equities, as cryptos showed more instability and 
more irregularity during the COVID-19 pandemic compared to international stock markets. 
For the study of dynamical systems, Luque et al. (2011) have proposed a novel method, called the 
horizontal visibility graph (HVG) algorithm, which captures the nature of different classes of series 
in a network context. By the HVG algorithm, time series are proficiently converted into a network 
representation and then analyzed from a new and complementary viewpoint, and with a full set of 
alternative techniques and tools from the complex network theory. Most of all, the topology of the 
network inherits the structure of the time series, in such a way that periodic, random, and fractal 
series map into motif-like, random exponential and scale-free networks, respectively (Bollobás, 
1998; Watts and Strogatz, 1998; Barabási and Albert, 1999). 
However, in spite of its suitability for the study of time series, the application of HVG algorithm to 
cryptocurrencies price dynamics is limited to the study carried out in Liu et al. (2020) to investigate 
the Bitcoin price volatility and deepen the understanding of the markets for rare items, e.g., the gold 
market. 
In this paper, we took advantage of the HVG algorithm to derive information about the process that 
generates the time series of three cryptocurrencies, Bitcoin (BTC), Ethereum (ETH), and Litecoin 
(LTC), over the period 01/09/2015-31/03/2020.  



Actually, BTC, ETH, and LTC are the most popular, big name cryptocurrencies. As of August 
2020, BTC and ETH are the digital coins with the largest market capitalization (assets in circulation 
multiplied by asset price) just below 218 and 46 billion of US dollars (Investing.com, 2020), 
respectively. LTC stays behind Bitcoin as the 7th-largest digital currency by market cap. It is often 
referred to as “silver to Bitcoin’s gold” as LTC adopts many of the features of BTC, and changes 
some other aspects that in 2011 the founder Charlie Lee felt could be improved. In fact, compared 
to BTC, LTC can produce a greater number of coins and it is characterized by faster transactions, 
lower transaction fees, and a new cryptographic algorithm for a more easily accessible process, said 
“mining”, for generating and releasing new coins and for verifying, authenticating, and then adding 
the ongoing network transactions to a public ledger. 
Among the three cryptocurrencies considered, ETH is the youngest one as it was launched by 
Vitalik Buterin on July 30th 2015. Therefore, we chose to consider a time frame starting from 
01/09/2015 in order to have three time series of the same length. 
Besides price and volume dynamics, in the proposed study, we also investigated the degree of 
synchronization between the three leading cryptocurrencies cited to detect potential interactions 
among bubble periods within the cryptocurrency markets. 
Hence, two research questions guided our analysis. As a first concern, we questioned whether the 
source of unpredictability in the price dynamics of the virtual currencies under study origins in a 
chaotic, deterministic or stochastic dynamical system, which is a fundamental issue for modeling 
and forecasting purposes. To this end, we used results from Lacasa and Toral (2010) showing that 
the three series map into a graph with exponential degree distribution, 𝑃(𝑘)~ exp(−𝜆𝑘), where the 
value of λ characterizes the specific process that generated the series. Second, we investigated 
whether price and volume upswings and crushes in one cryptocurrency market can lead to similar 
dynamics in other cryptocurrencies by running a synchrony analysis for the series investigated. To 
this aim we followed the procedure described in Freeman et al. (2019) and Cazelles (2004). 
Potential interactions among bubble periods within the cryptocurrency market might influence 
diversification possibilities and trading strategies. In fact, an investors might prefer to switch from 
one cryptocurrency to another to exploit the opportunities of profit generated by the correlated 
behavior of virtual currencies. The above research questions represent where our paper seeks to 
contribute to the existing literature. 
The remainder of the paper is structured as follows. We start in Section 2 with the description of the 
data and methods set used in our study. In Section 3 we focus on the empirical analysis and 
summarize our results. Section 4 concludes.  
 
Materials and Methods 
Daily closing prices and volumes in US$ of three virtual currencies, Bitcoin (BTC), Ethereum 
(ETH), and Litecoin (LTC), were downloaded from the website https://uk.investing.com (2020), for 
a total of 1680 trading days over the period 01/09/2015-31/03/2020. The research period resulted 
bounded by the shorter data set available for Ethereum, given the necessity to overlap the three 
series. 
As shown in Fig. 1, raw data were first Hodrick–Prescott (HP, Hodrick and Prescott, 1997) filtered 
to remove short term fluctuations associated with the business cycles and reveal long term trends. 
The HP filter is a nonparametric, nonlinear optimization algorithm used to remove the cyclical 
component (short-term fluctuations) of a time series from raw data. Basically, the series is divided 
into its growth (long-term trend) and cyclical components so that the squared deviation of the 



values from the trend is minimized. The HP filter is controlled by a smoothness parameter  μ, which 
penalizes variability in the growth component series. The larger the value of μ, the higher the 
penalty, the smoother the long-term component (as μ approaches infinity the filter produces a line; 
μ = 0 leaves unmodified the series). Literature suggests optimal values for μ depending on the 
frequency of observations. Here we used μ = 6,250,000, which is the value recommended for daily 
data (Baggio and Klobas, 2017).  
 

 
Fig. 1.: Daily prices (p) and volumes (v) series in US$ of Bitcoin (BTC), Ether (ETH), and Litecoin (LTC), smoothed 
with the Hodrick–Prescott filter (μ = 6,250,000 (Baggio & Klobas, 2017)). The black solid curve represents prices 
whereas the gray dotted curve represents exchange volumes of the cryptocurrency. 

 
Then, the Horizontal Visibility (HV) algorithm was used to map the smoothed time series into 
graphs according to the specific geometric criterion described in Lacasa et al. (2008). 
In fact, in order to analyze the complex features of the dynamics shown by the cryptocurrencies 
investigated, we avoided methods as the Lyapunov exponents, the Hurst exponent, fractal 
dimensions, symbolic discretization, and measures of complexity such as entropies or quantities 
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derived from them (Kantz and Schreiber, 2003; Sprott, 2003), whose calculation requires 
sophisticated techniques and the interpretation of results can be problematic for practitioners with 
little expertise (Baggio, 2008; Baggio and Sainaghi, 2011). 
Instead, the HVG approach is characterized by a straightforward implementation, is 
computationally less complex than the cited methods, and provides us with a quite simple mapping 
method for inheriting the time series properties in the structure of the associated graphs. “These 
features are going to make it easier to find connections between the underlying processes and the 
networks obtained from them by a direct analysis of the latter” (Núñez et al., 2012, p. 121). 
Let 𝑌 = {𝑦}ୀଵ,ଶ,…, be a time series with n observations. Each data point 𝑦 in the series is 

regarded as a node in the associated network graph and hence nodes inherit a natural ordering. For 
any two arbitrary nodes, m and n, they are said to have “horizontal visibility” to each other, and 
hence an edge connects them in the associated graph, if any other node h between them is 
associated to a lower record 𝑦 in the series. Formally, a horizontal visibility edge exists between 
two nodes m and n, if 𝑦 > 𝑦 and 𝑦 > 𝑦, for every node h such that 𝑚 < ℎ < 𝑛. 
The network extracted from a time series with the described algorithm is by construction always 
undirected connected, as any data point in the series sees at least its nearest neighbors (Li et al., 
2012). 
For illustrative purposes, the horizontal visibility graph (HVG) algorithm is represented in Fig. 2, 
where vertical bars are used to plot into the corresponding graph the latest 10 data points in the 
Ethereum time series. 

 
Fig. 2.: Representation of the algorithm to transform the last 10 data points in the Ethereum time series into the 
associated HVG. 

 
The main properties of the HVG representation can be found in Luque et al. (2009). Here we just 
recall that a time series mapped into an HVG with an exponential degree distribution, 
𝑃(𝑘)~ exp(−𝜆𝑘), shows chaotic, uncorrelated, or correlated stochastic dynamics depending on the 
value of the slope 𝜆. In particular, in Luque et al. (2009), the critical value 𝜆 = ln (3/2)  of the 
exponent has been found for the case of uncorrelated noise (white noise), by analytically computing 
the degree distribution of the HVG associated with a bi-infinite sequence of independent and 
identically distributed random variables extracted from a continuous probability density function. 
Thus, chaotic series map into an HVG with 𝜆 < ln (3/2), the slope is exactly on the frontier 𝜆 =

ln (3/2) for an uncorrelated random series, and 𝜆 > ln (3/2) characterizes a correlated stochastic 
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process (Lacasa and Toral, 2010). Therefore, the higher the slope of the exponential degree 
distribution, the higher the stability and predictability of the system. 
The existence of significant fluctuation cycles in the time series under study was also investigated 
looking at the community structure shown by the associated networks. Networks often show a 
structure organized in communities (or modules), where nodes belonging to a community are more 
densely connected among them than with nodes outside the group. 
Communities are loosely connected to each other instead (Newman & Girman, 2004; Fortunato, 
2010). The extent to which a network can be divided into well recognizable communities is 
measured by the index of modularity 

𝑄 =  ∑ (𝑒 − 𝑎)
ଶ

 , 
where eii represents the fraction of connections between nodes belonging to the same module i, and 
ai is the fraction of links with at least one end node inside module i. Q is normalized between 0 
(absence of modules) and 1 (perfect division into completely separated groups).  
Here we used the algorithm described in Blondel et al. (2008) to identify the different modules and 
derive the value of Q. Basically, the technique implements an iterative model to determine the 
optimal number of partitions that maximize the index Q, given a resolution parameter to determine 
the granularity level at which communities are detected. In our analysis, we set the resolution equal 
to 1 to get a standard modularity-based community detection. 
Finally, the method proposed in Freeman et al. (2019) and Cazelles (2004) was used to investigate 
the synchrony of the time series under study to determine whether explosivity in one cryptocurrency 
can lead to explosivity in other cryptocurrencies, namely the possibility that cryptocurrencies co-
bubble simultaneously.  
A time series, 𝑌 = {𝑦}ୀଵ,ଶ,…,, was first transformed into a sequence of symbols (letters) by 

comparing each data point 𝑦௧ to its nearest neighbors (the previous and the following record). Thus, 
𝑦௧ was identified as a trough point, peak point, increase, decrease, or same in accordance with the 
following criteria: a trough point if 𝑦௧ < 𝑦௧ିଵ ≤ 𝑦௧ାଵ or 𝑦௧ < 𝑦௧ାଵ ≤ 𝑦௧ିଵ; a peak point if 𝑦௧ିଵ <

𝑦௧ାଵ ≤ 𝑦௧ or 𝑦௧ାଵ < 𝑦௧ିଵ ≤ 𝑦௧ or 𝑦௧ାଵ ≤ 𝑦௧ିଵ < 𝑦௧; an increase point if 𝑦௧ିଵ ≤ 𝑦௧ < 𝑦௧ାଵ; a 
decrease point if 𝑦௧ାଵ ≤ 𝑦௧ < 𝑦௧ିଵ; and, finally, a stability point if 𝑦௧ିଵ = 𝑦௧ = 𝑦௧ାଵ. Symbols A, 
B, C, D, and E were associated to each of the possible cases (Fig. 3), respectively. Each numerical 
time series was therefore transformed into a symbolic time series, disregarding any changes in 
amplitude and mean trend but preserving the fundamental rhythm. 
 

 
 

Fig. 3. Transformation of a time series into symbols. 

 
 



Information theory was then used for quantifying the mutual rhythms of all pair-wise combinations 
of symbolic time series. For any two time series, 𝑌ଵ and 𝑌ଶ, the statistical significance of the 
mutual information was calculated as: 

𝐼భ,మ = 𝐻భ + 𝐻మ − 𝐻భ,మ , 

where 𝐼భ,మ represents the mutual information, 𝐻 = − ∑ 𝑝(𝑦)𝑙𝑜𝑔ଶ[𝑝(𝑦)]
ୀଵ  is the entropy of the 

symbolic series 𝑌, 𝑝(𝑦) is the probability that 𝑌 could take the value 𝑦 and measures the 

proportion of 𝑦 in the time series, and 𝐻భ,మ = − ∑ ∑ 𝑝(
ୀଵ 𝑦)𝑝(𝑦)𝑙𝑜𝑔ଶൣ𝑝(𝑦, 𝑦)൧

ୀଵ  represents 

their joint entropy. If 𝑌ଵ and 𝑌ଶ are two independent random variables, then 𝐻భ,మ = 𝐻భ + 𝐻మ 

and, therefore, the mutual information 𝐼భ,మ is zero.  

The mutual information was further normalized dividing 𝐼భ,మ  by the sum of the entropy of the two 

symbolic time series in question, formally: 

𝑈భ,మ = 2 ∗
𝐼భ,మ

𝐻భ + 𝐻మ
. 

To assess the statistical significance of the uncertainty coefficient 𝑈భ,మ calculated for the 

cryptocurrencies studied, 500 null mutual information values for any two time series were 
constructed by a Markov process. If the chance was < 0.05, we rejected the “null” that an observed 
mutual information value is due to chance. The mutual information values calculated in this way are 
normalized and can be interpreted as a percentage of synchronization. In particular, the mutual 
information coefficient allows us to document if time series oscillate at the same rhythm along the 
respective mean trend (Cazelles, 2004).  
 

  
Fig. 4.: Cumulative degree distributions for the filtered HVGs. Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC) 
price (p) and volume (v) series are considered. 

 
For the case under study, synchrony analysis is meant to serve the purpose of studying the potential 
interactions among bubble periods within the cryptocurrency markets investigated. For this reason  



we used mutual information over statistical correlations, which instead measure the synchrony 
between the mean trends of the time series investigated. 
Mutual information values and surrogate time series were obtained using an adapted version of the 
scripts available at https://github.com/people3k/pop-solar-sync. 
 
Empirical analysis and results 
The network degree distribution 𝑃(𝑘), con 𝑘 = 1, 2, …, represents the fraction of nodes in the graph 
with a number of direct connections to other nodes (degree) larger than 𝑘. It can be assumed as a 
basic measure of heterogeneity of a network.  
The cumulative degree distributions for the HVGs associated to the filtered BTC, ETH, and LTH 
price (p) and volume (v) series are plotted in Fig. 4. They all decay exponentially and are very close 
to one another. Deviations shown in the tail of the distribution are not significant and are due to the 
finite nature of the series. 
The value of the λ exponent for the six time series under study is shown in Fig. 5 where bars 
represent the 95% confidence interval. To better interpret our results, the exponent of the degree 
distribution for three null models, an uncorrelated stochastic (random) time series (Rnd), a 
fractional Brownian motion (fBm; the series was generated with Hurst exponent H = 0.5), and a 
series calculated from the Lorenz map (Lrnz; Parker and Chua, 1989), was also computed as 
reference value.  
 

 
Fig. 5.: Degree distribution exponents for the HVGs examined and the null models with 95% confidence interval 
(critical value λc = 0.405 ± 0.020; Rnd = random; fBm = fractional Brownian motion; Lrnz = Lorenz). 

 
Table 1.: Communities and modularity index for the networks  

 
Given 𝜆 = ln(3/2) = 0.405, all the 𝜆 exponents calculated are above such frontier and, therefore, 
none of the series studied is chaotic. ETH is the only cryptocurrency that exhibits a clear 
uncorrelated stochastic behavior in both the price and volume series. From 𝜆்~𝜆் > 𝜆 
emerges that BTC and LTC appear to behave similarly to a correlated stochastic process, instead. 
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BTC(p) BTC(v) ETH(p) ETH(v) LTC(p) LTC(v) 

Modularity (no. commun.): 37 34 35 32 33 32 

Modularity (cc): 0.946 0.938 0.945 0.935 0.940 0.932 

Modularity normalized: 0.972 0.966 0.973 0.965 0.969 0.962 

 



For the three virtual currencies studied, the higher value of the 𝜆 exponent for volumes reveals that 
traded quantities are more predictable than prices. 
A simple comparison between the modularity structure (Table 1) of the HVGs unveils quite the 
same number of fluctuations over the time horizon considered for the price and volumes series of 
the three cryptocurrencies investigated.  
Indeed, for the way the HVG is obtained, each community represents a cycle in the series. 
Moreover, the high measure (average normalized value = 0.968) for the modularity index proves 
that cycles in the whole series can be strongly identified. 
 

 

Fig. 6.: Community structure of the HVGs constructed: (a) BTC(p); (b) BTC(v); (c) ETH(p); (d) ETH(v); (e) LTC(p); 
(f) LTC(v). Colors (online) are used to mark nodes belonging to the same community. 

 



Communities inside the graphs constructed for the virtual currencies investigated are marked with 
different colors in Fig. 6. 
Similarities in the modularity partitions of the HVGs obtained for the three virtual currencies have 
been also calculated (Table 2) by using a version of Rand index and mutual information 
(AdjRandIdx, AdjMutInfo) corrected for chance (Hubert and Arabie, 1985). These indices are 
normalized so that the maximum means total agreement between partitions. For comparison the last 
two columns show the values calculated using a purely random attribution of community 
membership (RndRI, RndAMI).  

Table 2.: Similarities in the modularity partitions of the HVGs 

 
Table 3.: Pairwise normalized (uncertainty coefficient) mutual information values (0 lag) for the 
price (p) and volume (v) time-series. Time horizon split in two periods: before (a) and after (b) 
28/02/2018. Higher values, showing higher synchrony, are marked. 
Results support a strong similarity between the internal (microeconomic) structure of the networks. 
Not only the HVGs present a roughly equal modularity structure, the internal composition of the 
communities is alike. To the aim of our analysis, such result proves that price and volume dynamics 
of the cryptocurrencies were characterized by cyclical patterns of similar wavelength and amplitude 
over the time period considered. 
This result paves the way for the last part of our analysis: the study of synchrony between the 
virtual currencies investigated. 
Time series of price and volumes were compared using the method described in the previous 
section. The whole time horizon was divided into two sub periods (the vertical line in Fig. 1): 
before (a) and after (b) 28/02/2018. That date is close to the time of the collapse of price in the 
Bitcoin market. 
 

  AdjRandIdx AdjMutInfo RndRI RndAMI 

BTC(p) BTC(v) 0.574 0.772 0.001 0.006 

BTC(p) ETH(p) 0.541 0.772 0.001 0.006 

BTC(p) ETH(v) 0.542 0.757 0.001 0.006 

BTC(p) LTC(p) 0.557 0.775 0.001 0.006 

BTC(p) LTC(v) 0.490 0.726 0.001 0.006 

BTC(v) ETH(p) 0.532 0.762 0.000 -0.002 

BTC(v) ETH(v) 0.615 0.806 0.000 -0.002 

BTC(v) LTC(p) 0.548 0.772 0.000 -0.002 

BTC(v) LTC(v) 0.539 0.768 0.000 -0.002 

ETH(p) ETH(v) 0.553 0.767 0.000 0.001 

ETH(p) LTC(p) 0.537 0.771 0.000 0.001 

ETH(p) LTC(v) 0.479 0.730 0.000 0.001 

ETH(v) LTC(p) 0.530 0.764 0.000 0.001 

ETH(v) LTC(v) 0.593 0.787 0.000 0.001 

LTC(p) LTC(v) 0.519 0.751 0.000 0.004 

 



 
Results (Table 3) indicate that the time series investigated display synchrony to a limited extent 
(marked values are for the pairs that show some higher synchronization). Actually, the relatively 
low values for the mutual information coefficients obtained do not prove that the time series under 
investigation are not correlated. They rather document that the three virtual currencies studied, in 
the time horizon considered, do not show a synchrony such that they might co-bubble 
simultaneously. Yet, very interestingly, the degree of synchronization between the cryptocurrencies 
investigated changes before and after a bubble burst occurs. Indeed, with the only exception for 
LTC, which showed synchrony with the BTC price and volumes series also before the selected date, 
the value of the uncertainty coefficient increased considerably after the drop in BTC price. 
Although our results do not support the hypothesis of potential interactions among bubble periods, 
the investigation carried out reveals a higher synchrony in the behavior of the cryptocurrencies 
investigated after a collapse event. 
 
Conclusions 

In this paper we provided an extended use of complex network analysis to cryptocurrency market. 
Furthermore, we afforded an estimation of the synchrony between the price and volumes series of 
three virtual currencies, Bitcoin, Ethereum, and Litecoin, based on the procedure described in 
Freeman et al. (2019) and Cazelles (2004). 
Price and volume time series were first mapped into the associated Horizontal Visibility Graphs to 
reveal the complex structure of the virtual currencies studied. Afterwards, synchrony analysis was 



carried out to unveil possible common patterns of upswing and collapse in the dynamics of price 
and volumes for the virtual currencies investigated. 
Summing up the main outcome, we can conclude that BTC, LTC, and ETH exhibit different 
dynamics: correlated stochastic for BTC and LTC, and a clear uncorrelated stochastic (random) 
behavior for ETH. Moreover, volume dynamics resulted more predictable than prices. A strong 
similarity was found between the currencies investigated in terms of their community structure, 
instead. Such result proves that price and volume dynamics of the three virtual currencies were 
characterized by cyclical patterns of similar wavelength and amplitude over the time period 
considered. Yet, as the synchrony analysis revealed, such similarity did not translate into the 
possibility for the cryptocurrencies to co-bubble simultaneously. Indeed, with the only exception 
represented by the dynamics shown by the Litecoin market, the values of the uncertainty coefficient 
calculated for the other two cryptocurrencies changed considerably before and after the time of the 
collapse of price in the Bitcoin market. Although our results do not support the hypothesis of 
potential interactions among bubble periods, the investigation carried out revealed a higher 
synchrony in the behavior of the cryptocurrencies investigated after a collapse event. 
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